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Figure 1: Steps of our near-lossless compression pipeline. Input image (a) is segmented into superpixels (b) using the SLIC0 algorithm. In
(c) the figure-ground segmentation mask is applied to the superpixelization result. (d) shows the final results of homogeneous superpixels
that can safely be approximated using planes.

Abstract
Cultural heritage preservation using photometric approaches received increasing significance in the past years. Capturing of
these datasets is usually done with high-end cameras at maximum image resolution enabling high quality reconstruction results
while leading to immense storage consumptions. In order to maintain archives of these datasets, compression is mandatory
for storing them at reasonable cost. In this paper, we make use of the mostly static background of the capturing environ-
ment that does not directly contribute information to 3d reconstruction algorithms and therefore may be approximated using
lossy techniques. We use a superpixel and figure-ground segmentation based near-lossless image compression algorithm that
transparently decides if regions are relevant for later photometric reconstructions. This makes sure that the actual artifact or
structured background parts are compressed with lossless techniques. Our algorithm achieves compression rates compared to
the PNG image compression standard ranging from 1:2 to 1:4 depending on the artifact size.

CCS Concepts
• Computing methodologies → Image compression; Image segmentation; Image representations;

1. Introduction

To achieve state of the art digitization of cultural heritage ob-
jects, large datasets are mandatory. For an accurate 3d reconstruc-
tion these need to consist of a wide array of different information,
mainly consisting of high resolution images and other scene pa-
rameters. To safely preserve these artifacts digitally and therefore

their inherent heritage for generations to come, redundant copies
across the world are essential. This goal however is limited by the
sheer amount of necessary data per object. For these reasons, large
transfer and storage costs are induced.

We focus on the compression of image data, as it comprises
the largest part of the data with well known statistical properties
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and therefore can yield the most promising storage space reduc-
tion results. When capturing images, they are either saved in their
camera’s proprietary file format or are left uncompressed. Cameras
however are not able to produce satisfactory compression rates due
to hardware limitations and generic compression algorithms are
not suitable for the required compression rates. Other state of the
art image compression algorithms suffer from limitations induced
by camera noise [BGR*19]. This leads to near-lossless approaches
that further reduce input data while keeping relevant image parts or
frequency spectra lossless.

Our algorithm takes advantage of the design of most stereo algo-
rithms. They usually minimize a data term that is derived from pixel
similarity at different disparity levels and is sensitive to edges. Ho-
mogeneous regions are regions that do not contain edges or corners
and usually occuring in the background of images. They are usu-
ally approximated by learned image statistics of neighboring pixels
[WS00]. This leads to the observation that homogeneous regions
do not explicitly contribute depth information to the reconstruction
result. We present an algorithm that automatically detects homoge-
neous regions in a semi-supervised form and encodes them as pa-
rameters of an approximated plane while keeping remaining parts
of the image untouched. This is extremely efficient for big homoge-
neous regions as planes can be stored using only three floating point
numbers plus one noise parameter. Additionally, we use a Markov
Random Field based figure–ground segmentation in order to speed
up our algorithm and further ensure that intra-object homogeneous
parts are not affected by the lossy compression.

2. Related Work

Ditigal Cultural Heritage Preservation STEPHENSON [Ste99]
review an interactive digital image database for cultural herti-
age artifacts in terms of structure, tools and descriptiveness of
included metadata. The application of POLITOU, PAVLIDIS, and
CHAMZAS [PPC04] use the progressive image transmission tech-
nique of the JPEG2000 algorithm to efficiently browse and trans-
mit cultural hertiage images over the internet in a web browser.
PAVLIDIS, KOUTSOUDIS, ARNAOUTOGLOU, et al. [PKA*07] give
an overview of state-of-the-art algorithms and techniques suitable
for 3d reconstructions of cultural hertiage artifacts.

Lossy Compression The most common lossy natural image
compression algorithm “JPEG” of WALLACE [Wal91] takes
a 3 bit×8 bit image and estimates the discrete cosine coeffi-
cients of 8×8 pixel patches. Afterwards, it quantizes the coef-
ficients and compresses them using Huffmann coding [Huf52].
The “JPEG2000” algorithm of CHRISTOPOULOS, SKODRAS, and
EBRAHIMI [CSE00] applies a discrete wavelet transformation to
the image and stores quantized coefficients with an arithmetic
coder. “JPEG2000” also supports lossless image compression by
applying a reversible integer wavelet transformation to the image.

Near-Lossless Compression The “Multiview Image Compression
Algorithm” of BATTIN, VAUTROT, and LUCAS [BVL10] makes
use of inter-view redundancies and exploits the positive-sided geo-
metric distribution between pixels of two neighboring images. AY-
DINOGLU and HAYES [AH94] use the previously computed dispar-

ity values to estimate every second frame. They compensate pho-
tometric variations using the “subspace projection technique”. The
adaptive approach of PERRA [Per15] aims to minimize the entropy
of the Differential Pulse-Code Modulation (DPCM) for each block
that is small enough that residual image encoding can be omitted.
The DPCM coefficients are encoded using the LZMA algorithm.

Lossless Compression The PNG algorithm of BOUTELL [Bou97]
evaluates several local filters (i.e. differences) on neighboring pix-
els, encodes the filter’s identifier with the lowest response and com-
presses its response using Huffmann coding. The PNG algorithm is
able to encode images with up to four color channels and a color
depth of 32 bit and can therefore be used to encode raw camera sen-
sor data. The compression algorithm of VON BUELOW, GUTHE,
RITZ, et al. [BGR*19] uses a wavelet-based compression scheme
and re-arranges the Bayer pattern into different color channels. The
results are evaluated on dedicated cultural heritage datasets.

Image Segmentation The figure-ground segmentation algorithm
“GrabCut” of ROTHER, KOLMOGOROV, and BLAKE [RKB04]
segments images into multiple regions that have similar image
characteristics by minimizing Markov Random Field energy terms.
The parameter-free superpixel generation algirithm “SLIC0” of
ACHANTA, SHAJI, SMITH, et al. [ASS*12] segments images into
a user-defined number of equally sized regions that adapt to color
changes.

3. Algorithm

Our image compression algorithm is structured as follows. First,
the algorithm computes a superpixelization using the SLIC0
method of ACHANTA, SHAJI, SMITH, et al. [ASS*12] of the given
input image. We use the SLIC0 algorithm as it requires no param-
eter except for the number of superpixels it should generate. After
generating the superpixels it applies a pre-computed figure-ground
annotation (section 3.1) to the superpixelization. This ensures the
homogeneous regions inside the artifact do not get compressed
lossy. Regions outside the figure-ground mask can still contain fea-
tures that may contain important structures supporting stereo algo-
rithms and should therefore stay lossless. In order to fit a plane into
a superpixel, we define the coordinate system to be the the hori-
zontal and vertical axis of the image xi,yi and the normalized color
depth as the third one zi, resulting in pi = (xi,yi,zi)

T . Now, we use
the method of least-squares to fit a plane

ax+by+ cz+d = 0

⇔ a/cx+ b/cy+ d/c =−z, c 6= 0

⇔ a′x+b′y+d′ = z, a′ =−a/c, b′ =−b/c, d′ =−d/c

into the set of pixels {p1, . . . , pn} of a superpixel. We apply a singu-
lar value decomposition (SVD) to the mean-subtracted superpixel
points in order to find a numerically stable least-squares solution.
The error between the superpixel and the approximated plane can
then be derived by ei = |z− zi| for each point pi in a superpixel.

Once, the algorithm has found an optimal plane, a threshold on
the average difference σ < τavg, where σ = Σiei/n, is used for each
plane to ensure that the plane is a good approximation of the given
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superpixel. τavg depends on the camera sensor as the noise magni-
tude depends on the response curve of it and must be calibrated for
each camera setting (see section 4). In order to calibrate the noise
magnitude for the threshold we select a superpixel that is definitely
in the background and evaluate its error value ei and derive the
threshold from it. Additionally we introduce a less strict threshold
on the peak difference maxi ei < τmax that is used because outliers
of a superpixel get averaged out with the prior threshold but could
contain important image features. In our implementation it turned
out that τmax = 0.024 can be used for all tested camera models. If
the error values are small enough, the algorithm discards the input
data and only stores the parameters a′, b′, d′, σ, which define the
plane and the amount of noise in this region. The whole process is
visualized in fig. 1.

3.1. Image Masking

Image masking describes the process of foreground and back-
ground segmentation and extraction, where the foreground contains
only the object of interest and the background is usually removed.
The background often consists of the blurred environment behind
the object and more challenging, the surface or mount right next
to it where the object is placed on or attached to. Especially in
the cultural heritage domain, fragile artifacts are often mounted
on and stabilized by their individually designed stands. Concern-
ing the process of photogrammetric 3d digitization, if a mount par-
tially occludes the artifact’s surface but it is applicable to reposi-
tion the artifact, e.g. upside down, by changing the mount structure
and resolving the occlusion, then the complete surface can be cap-
tured and later aligned throughout multiple scan passes by carefully
masking out background and mount structure in each image. This
is a tedious but common image preprocessing step for photogram-
metry that can enhance the resulting 3d model while reducing the
computation time. Image masks restrict computationally expensive
steps during the 3d reconstruction, such as feature detection, dense
image matching and texture mapping, to only those image regions
containing parts of the object of interest. Especially when the ar-
tifact had to be repositioned throughout multiple scan passes, the
utilization of image masks is essential for a clean registration be-
tween the different image sets. During this feature based alignment
process across multiple passes, masking can remove the confusion
with otherwise reappearing visible structures, such as the surface
of a table or mount under the object. Therefore, most state-of-the-
art photogrammetry software solutions, such as Agisoft Metashape,
offer the option to provide binary masks along with the actual im-
age set as input.

To automatically mask arbitrary large image sets suited for pho-
togrammetric 3d reconstruction the Competence Center For Cul-
tural Heritage Digitization [SRT*14; SRFF17] of the Fraunhofer
Institute for Computer Graphics Research developed an image
masking application that requires only little initial user input. The
approach relies on differences in color and contrast and is based on
GrabCut [RKB04], that extends the original image segmentation by
graph cut [BJ01] with an iterative energy minimization. It is carried
out as follows. With scribbles the user approximately marks fore-
ground and background on one or more images of the set. From the
marked areas a Gaussian Mixture Model (GMM) on multiple di-

Figure 2: Screenshot from the CultLab3D Image Masking App.
The top right interactive window allows the user to set the initial
scribbles. The bottom right window shows the segmentation result.

mensions from color spaces, such as RGB, Lab and HSV, is formed
and iteratively refined on the marked images. Figure 2 shows the
initial user input on one image and on the left side the retrieved
means of the typically five components of the GMMs for back-
ground and foreground visualized in RGB. This refined segmen-
tation model can be saved and then applied to all other images of
the set. Optionally, the aggressiveness or connectivity of the mask-
ing can be adjusted by additionally applying a morphological filter
chain of subsequent erosion and dilation operations. The resulting
blobs can as well be filtered by size and position. Especially visible
in macro photography and caused by a narrow depth of field, parts
of objects become blurry and lead to blurry texture on the 3d model.
To address this problem, masked foreground regions can further be
reduced to only their sharp parts by thresholding a local sharpness
estimate based on the Laplacian operator. The sharpness estimate
must be adjusted for each single image independently.

Datasets prepared with the CultArm3D scanning station
[TDR*20] are normally easy to mask because the station contains
a turntable to place the object on and a black or white solid back-
ground shield.

3.2. Representation

Our algorithm is able to use arbitrary lossless image compres-
sion algorithms for storing lossless regions of the input images.
In our implementation we use the PNG algorithm which supports
16 bit images. In order to distinguish between lossless and plane-
approximated regions, we define a mask as a one-channel 16 bit im-
age that encodes a 0 for each pixel of a lossless superpixel and an
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Figure 3: The Bayer pattern groups four neighboring pixels
that can be re-arranged into four independent color channels
[BGR*19].

integral value > 0 denoting the superpixel identifier for each plane-
approximated superpixel. Encoding the lossless parts of the mask
is almost free, as lossless regions tend to be adjacent to each other.
This can easily be exploited by image compression algorithms that
usually only encode differences to neighboring pixels. The same
applies for plane-approximated regions, where differences are al-
ways small, because superpixel identifiers are enumerated continu-
ously in the neighborhood.

The lossless image data is encoded by dividing the Bayer pat-
tern of the camera into four color channels as illustrated in fig. 3.
This technique ensures that all adjacent pixels originate from the
same type of color filter and enlarges spatial correlations. All plane-
approximated pixels are set to zero in the same image. Again, the
plane-approximated parts are almost free to encode given the im-
plementation of image compression algorithms.

The plane and noise parameters (a′,b′,d′,σ) of each plane are
stored as a list in an uncompressed binary representation as com-
pressing floating point data yields sub-optimal compression rates
compared to natural image data and the number of planes are small
compared to the lossless parts of the image.

3.3. Decompression

The decompression step of our algorithm works as follows. First
the mask image and the image containing lossless superpixels is
decompressed using the reverse standard image compression algo-
rithm used in section 3.2. Now, the algorithm copies the lossless
pixels of the image if the mask is zero at the same pixel posi-
tion. Otherwise, it approximates the pixel as a point on the plane
(ax+by+d)/c +N (0, σ

2). The algorithm adds mean-free gaussian
noise with a variance derived from the average error computed dur-
ing the plane fitting step because planes at superpixel boundaries
tend to create sharp edges due to approximation errors. We do not
use de-blocking techniques to avoid loss of sharp edges and corners
as the SLIC algorithm does not distinguish between edges that are
created because the superpixel reached its size limit or edges that
are actually in the original image.

4. Results

In section 4.1 we evaluate the compression rates and run-time per-
formance of our algorithm on a number of datasets that are captured
with cultural heritage image acquisition scanners. In section 4.2 we
demonstrate how the image masking algorithm handles difficult in-
put images. Additionally, we demonstrate that homogeneous areas

(a) Teracotta-Head (b) Vase

(c) Wooden-Dragon (d) Java Gold: Royal Ascetic

Figure 4: Zoomed in example images from our evaluation datasets.

do not affect the reconstruction error with an evaluation of the de-
compressed images against the original images with the Middle-
burry benchmark in section 4.3.

4.1. Superpixel Count and Compression Rates

A well chosen number of superpixels (parameter n) is es-
sential for optimal compression rates. To obtain these val-
ues, we evaluated four multi-view geometry acquisition datasets
acquired with the CultArm3D scanning station of the Com-
petence Center Cultural Heritage Digitization of the Fraun-
hofer Institute for Computer Graphics Research [SRT*14;
SRFF17; TDR*20]. These depict the Teracotta-Head (252 im-
ages) and the Vase artifact (259 images) that were scanned
with a Phase One iXG 100MP 11608×8708Pixel camera and a
Schneider RS 72mm/iXG lens. The Wooden-Dragon (130 images)
and the Java Gold: Royal Ascetic artifact (540 images) were
scanned with the Canon EOS 5DS R 8688×5792Pixel camera
and a Canon EF 100mm f/2.8L Macro IS USM lens. Both cameras
capture with a color depth of 14 bit.

The Teracotta-Head, Vase and Wooden-Dragon datasets are non-
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antique testing datasets. The Java Gold dataset was captured at the
Reiss Engelhorn Museum (rem) in Mannheim, Germany in August
2019 and shows a meditating royal ascetic found at the island Java
in Indonesia. Example images from the datasets are shown in fig. 4.

In initial empirical experiments it turned out that the threshold
τavg = 0.003 is useful for the Phase One camera and τavg = 0.0006
is useful for the Canon camera. These different thresholds need to
be calibrated once for each static capturing setup as the amount of
noise and the dynamic range depend on different vendor-specific
settings like the film speed and the camera response curve.

Figure 5 shows how the compression rate depends on the chosen
number of superpixels per image. We found that values between
1024 and 2048 are optimal and values over 2048 have detrimental
effects on compression rates. For further experiments we used 1024
superpixels per image. It is noteworthy, that the Wooden-Dragon
and Royal Ascetic images do not suffer as much as the other two
data sets from bad compression rates due to smaller number of su-
perpixels per image. This is a result of the different background
homogeneities produced by either radial gradients in the Teracotta-
Head and Vase datasets in comparison to the perfectly homoge-
neous black background of the Wooden-Dragon and Royal Ascetic.
The compression rates are between 1:2.119 for the Wooden-Dragon
and 1:4.39167 for the Royal Ascetic. These results are consistent
with the idea of our approach, as the Royal Ascetic dataset consists
of a smaller object and therefore larger background space for com-
pression.
Table 1 shows the run-time performance of our algorithm in com-
parison to the PNG compression standard evaluated on a 2.60 GHz
Intel Xeon E5-2650 v2.

Dataset T-Head Vase W-Dragon Java-Gold
Our 648.767 760.307 190.198 558.403

PNG 339.943 427.486 161.783 546.949

Table 1: Run-time performance of our algorithm and the PNG
compression standard for the datasets shown in fig. 4. All values
were measured in seconds and resulted for a chosen number of su-
perpixels of 1024.

4.2. Image Masking Evaluation

The presented CultLab3D image masking app’s algorithm is suited
to segment mask images even though they feature a suboptimal
setup or challenging structures. Figure 6 illustrates the masking of
example images that exhibit a subset of such challenges that fre-
quently occur.

For accurate photogrammetric 3d reconstruction many high res-
olution images from different angles are needed. Especially large
and detailed artifacts can be clipped in some of these images. Fig-
ure 6c exemplary shows that the presented masking algorithm is
able to handle clipped artifact images. Furthermore, artifact im-
agery may be blurry. Even though blurry images are not optimal
for photogrammetric 3d reconstruction Figure 6d illustrates that the
CultLab3D Image Masking App is able to mask these images prop-
erly.
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Figure 5: Compression rates in 1:X in relation to the number of
superpixel per image and in comparison to the PNG compression
standard for our four datasets.

(a) (b) (c) (d)

Figure 6: Segmentation results from the CultLab3D Image Mask-
ing App for example images with structured background (a), holes
(b) and clipped (c) or blurry (d) artifact.

Other challenges in the cultural heritage domain arise from oc-
clusion or the structural properties of individually designed stands
for cultural heritage artifacts. Figure 6a illustrates a scenario in
which the presented artifact stand features a visible heterogeneous
structure. Nevertheless, the presented image masking algorithm is
able to perform the masking process properly.

An additional challenge may be posed by the structural proper-
ties of the pictured artifact itself. Figure 6b illustrates an example
in which the wholes of the vase handles are not excluded by the
masking algorithm. This finding suggests that the presented algo-
rithm has issues correctly masking loose objects. However, in prac-
tice this issue does not result in relevant performance loss since
most cultural heritage artifacts are rather compact. Therefore, even
though an ideal masking algorithm would exclude certain areas the
implications of this behaviour regarding the compression rate are is
insignificant.
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Dataset
AAE Whole AAE Noocc ARE change Bpp Lossy

orig our orig our Whole Noocc png our ratio [%]
Adirondack 19.91 19.97 19.86 19.93 0.29 0.31 4.00 3.90 10.31

ArtL 16.64 16.73 15.91 16.02 0.57 0.72 4.71 4.77 2.65
Jadeplant 41.94 41.72 44.29 44.17 0.53 0.25 4.48 4.25 14.8

Motorcycle 21.46 21.44 21.76 21.72 0.13 0.15 4.74 4.73 1.34
MotorcycleE 21.59 21.60 21.90 21.91 0.02 0.02 4.57 4.55 2.19

Piano 11.72 11.75 11.12 11.15 0.22 0.29 4.00 3.93 12.29
PianoL 13.94 13.90 13.53 13.49 0.27 0.32 4.01 3.90 12.55

Pipes 19.44 19.43 18.65 18.65 0.04 0.03 4.60 4.61 1.4
Playroom 23.59 23.60 21.74 21.77 0.06 0.11 4.28 4.23 8.05
Playtable 19.48 19.44 19.33 19.27 0.23 0.26 4.61 4.55 7.38

PlaytableP 17.98 17.95 17.74 17.70 0.18 0.22 4.62 4.57 7.28
Recycle 12.64 12.97 12.15 12.51 2.64 2.98 3.47 3.39 9.59
Shelves 11.65 11.75 11.61 11.73 0.85 0.97 3.69 3.39 19.97

Teddy 14.91 14.91 13.96 13.96 0.01 0.00 4.92 4.93 0.05
Vintage 36.35 36.55 36.41 36.64 0.55 0.62 3.79 3.51 22.89

Table 2: Average error rates for the whole image and non occlusion in total numbers (Average Absolute Error) and as change between the
original and our compression in percent (Average Relative Error). Compression rates in Bit/Pixel for the data set. The lossy ratio denotes
the percentage of superpixels that could be used for our plane based compression method.

Figure 7: Example images from the Middleburry benchmark
datasets [SHK*14].

4.3. Reconstruction Quality

To assess the reconstruction quality after compression and de-
compression we used the 2014 Middleburry benchmark dataset
of SCHARSTEIN and SZELISKI [SS02b] and SCHARSTEIN,
HIRSCHMÜLLER, KITAJIMA, et al. [SHK*14] to evaluate the av-
erage disparity error of the image pairs with and without our near-
lossless compression technique applied. Examples for this dataset
can be seen in fig. 7. In order to compute the disparity values from
the image pair, the algorithm computes the cost volume contain-
ing cost values for each possible disparity value at all image posi-
tions and perform a local optimization on that cost volume [SS02a].
We do not use any global optimization methods as this would re-
quire further assumptions on the dataset. Table 2 shows the aver-
age absolute error (AAE) and average relative error (ARE) rates
for the whole image and the non occlusion areas for the original
images and the images obtained from our compression approach.
Furthermore we present the amount of superpixels, that could be
successfully used for our plane based compression method in per-

cent. These values can differ widely, as they are depended on avail-
able background superpixels. The only dataset leading to a recon-
struction quality change over 1.0% was the Recycle dataset with
a percentage change of 2.64% for the whole image and 2.98% for
non occlusion. Non occlusion error changes are higher in almost all
cases, as non-occlusions are harder to reconstruct due to the limita-
tion of only perceiving one at a time. The compression rate does not
change significantly which would confer a compression rate only at
the common level of PNG compression. This is due to two factors
that are present in the Middlebury dataset. First, the ratio of back-
ground parts is low compared to the foreground background, be-
cause these datasets are designed for stereo algorithms. This leads
suboptimal compressions. This can be dealt with, by simply using
homogeneous backgrounds, when capturing datasets. Second, the
images are preprocessed and contain a lower than usual amount of
noise, which negatively affects our compression approach. This can
be solved by retaining the background noise during preprocessing
or not performing preprocessing steps at all. Both drawbacks do
not affect the actual cultural hertigage image datasets, which can
be seen at the superiour compression rates for them.

5. Conclusion

In this paper, we presented a near-lossless compression algorithm
based on superpixels and figure-ground segmentation that makes
use of homogeneous background parts of cultural heritage arti-
fact images. Our algorithm uses the well known PNG algorithm
as the compression backend and is therefore easy to implement. It
archives compression rates of 1:4 compared to the standard PNG
algorithm for small artifacts where background parts dominate and
not fully cover the image dimensions and 1:2 for artifacts that dom-
inate the image dimensions. Further the algorithm ensures that ap-
proximations of lossy parts of the image are bound to a camera-
dependant noise threshold. Generally it can be said that background
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pixels are hard to compress using standard lossless image com-
pression algorithms due to noise. Handling background pixels with
lossy compression algorithm is a very good trade-off between re-
construction quality and compression rates.

Future Work In the future we would like to further evaluate the
reconstruction quality on the cultural heritage datasets directly in
order to address the issue that compression rates and reconstruction
qualities are currently evaluated on different datasets. Furthermore,
we would like to automatically detect noise magnitudes of camera
images in order to automatically determine the required threshold
for our plane-approximation technique.

Source Code The source code for this paper is available at
https://github.com/maxvonbuelow/planecomp.
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