
Computer Science
Department
Interactive Graphics
Systems Group

Visual Insights into Memory
Behavior of GPU Ray Tracers
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
Genehmigte Dissertation von MaximilianAlexander vonBülow aus Mainz
Tag der Einreichung: 12. März 2024, Tag der Prüfung: 30. April 2024

1. Gutachten: Prof. Dr. techn. Dr.-Ing. eh. DieterW. Fellner
2. Gutachten: Prof. Dr. Ir. Arjan Kuijper
3. Gutachten: Prof. Dr.-Ing. Gabriel Zachmann
Darmstadt, Technische Universität Darmstadt

Visual Insights into Memory Behavior of GPU Ray Tracers

Accepted doctoral thesis by MaximilianAlexander vonBülow

Date of submission: 12. März 2024
Date of thesis defense: 30. April 2024

Darmstadt, Technische Universität Darmstadt

Please cite this document as:
DOI: https://doi.org/10.2312/diss.20241000
DOI: https://doi.org/10.26083/tuprints-00027476
Year thesis published in TUprints: 2024

This work is licensed under a Creative Commons License:
Attribution–ShareAlike 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/

https://doi.org/10.2312/diss.20241000
https://doi.org/10.26083/tuprints-00027476
https://creativecommons.org/licenses/by-sa/4.0/

Erklärungen laut Promotionsordnung

§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftli-
chen Version übereinstimmt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht
wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthe-
ma und Ergebnis dieses Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter
Verwendung der angegebenen Quellen verfasst wurde.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, 12. März 2024
M. von Buelow

iii

Abstract

Ray tracing is a fundamental rendering technique that typically projects three-dimensional
representations of a scene onto a two-dimensional display. This is achieved by perspectively
sampling a set of rays into the scene and computing intersections against the relevant
geometry. Secondary rays may be sent out from these intersection points, allowing for
physically correct global illumination on the reverse photon direction.
Real-time rendering has historically used classical rasterization pipelines, which are

straightforward to implement on hardware as they form a data-parallel problem projecting
the whole scene into the coordinate system of the image. In contrast, task-parallel ray
tracing suffers from incoherency between rays. However, recent advances in ray tracing
have led to more efficient approaches, resulting in even more efficient embedded hardware
implementations. While these approaches are already capable of rendering realistic images,
further improvements in run-time performance can compensate for computational time to
achieve higher framerates, display resolutions, ray-tracing recursion depths, or reducing
the energy footprint of ray-tracing data centers.

A fundamental technique for improving ray-tracing performance is the use of bounding-
volume hierarchies (BVH), which prevent rays from intersecting the entire scene, especially
in occluded or distant regions. In addition to the structural efficiency of a BVH, the primary
bottlenecks of GPU ray tracing are memory latency and work distribution. These factors
mainly result in more coherent memory accesses, making caching more efficient.
Creating programs with the goal of achieving higher caching rates typically requires

increased programming efforts and a deep understanding of the hardware, as an additional
abstraction layer is introduced, making the memory pipeline less transparent. General-
purpose profilers aim to support the implementation process. However, they typically
display caching rates based on kernel calls. This is because these values are measured
using basic hardware counters that do not distinguish between the context of a memory
access. In many cases, it would be useful to have a more detailed representation of
memory-related profiling metrics, such as the number of recordings per memory allocation
or projections into other domains, such as the framebuffer or the scene geometry.

This thesis presents a new method for simulating the GPU memory pipeline accurately.
The method uses memory traces exported by dynamic binary instrumentation, which

v

can be applied to any compiled GPU binaries, similar to standard profilers. The exported
memory profiles can be used for performance visualization purposes in individual domains,
as well as traditional memory profiling metrics that can be displayed in finer granularity
than usual. A method for mapping memory metrics onto the original scene is included,
allowing users to explore profiling results within the scene domain, making the profiling
process more intuitive. In addition, this thesis presents a novel compressed ray-tracing
implementation that optimizes its memory footprint by making assumptions about the
topological properties of the scene to be rendered. The findings can be used to evaluate
and optimize a wide range of ray tracing and ray marching applications in a user-friendly
manner.

vi

Zusammenfassung

Ray Tracing ist eine wichtige Rendering-Technik, bei der in der Regel dreidimensionale
Repräsentationen einer Szene auf eine zweidimensionale Anzeige projiziert werden. Dies
wird erreicht, indem Strahlen perspektivisch in die Szene gesampelt und Schnittpunkte
mit der relevanten Geometrie berechnet werden. Von diesen Schnittpunkten aus können
Sekundärstrahlen ausgesandt werden, die eine physikalisch korrekte globale Beleuchtung
in der umgekehrten Photonenrichtung ermöglichen.
Beim Echtzeit-Rendering wurden in der Vergangenheit klassische Rasterisierungspi-

pelines verwendet, die auf der Hardware einfach zu implementieren sind, da sie ein
datenparalleles Problem darstellen, das die gesamte Szene in das Koordinatensystem des
Bildes projiziert. Im Gegensatz dazu leidet das aufgabenparallele Ray Tracing unter der
Inkohärenz zwischen den Strahlen. Jüngste Fortschritte beim Ray Tracing haben jedoch zu
effizienteren Ansätzen geführt, die zu noch effizienteren Implementierungen für eingebet-
tete Hardware führen. Während diese Ansätze bereits in der Lage sind, realistische Bilder
zu rendern, können weitere Verbesserungen die Rechenzeit kompensieren, um höhere
Frameraten, Bildschirmauflösungen und Ray-Tracing-Rekursionstiefen zu erreichen oder
den Energiebedarf von Ray-Tracing-Datenzentren zu reduzieren.

Eine grundlegende Technik zur Verbesserung der Ray-Tracing-Leistung ist die Verwen-
dung von Bounding-Volume-Hierarchien (BVH), die verhindern, dass alle Strahlen die
gesamte Szene schneiden müssen, insbesondere in verdeckten oder weit entfernten Re-
gionen. Neben der strukturellen Effizienz einer BVH sind die primären Flaschenhälse des
GPU-Ray-Tracings die Speicherlatenz und die Arbeitsverteilung. Diese Faktoren führen
vor allem zu kohärenteren Speicherzugriffen, wodurch das Caching effizienter wird.

Die Erstellung von Programmen mit dem Ziel, höhere Caching-Raten zu erreichen, erfor-
dert in der Regel einen erhöhten Programmieraufwand und ein tiefes Verständnis der Hard-
ware, da eine zusätzliche Abstraktionsschicht eingeführt wird, die die Speicherpipeline
weniger transparent macht. Allzweck-Profiler zielen darauf ab, den Implementierungspro-
zess zu unterstützen. Sie zeigen jedoch in der Regel Caching-Raten auf der Granularität
von Kernel-Aufrufen an. Dies liegt daran, dass dieseWerte mit einfachen Hardware-Zählern
gemessen werden, die nicht zwischen dem Kontext eines Speicherzugriffs unterscheiden.
In vielen Fällen wäre eine detailliertere Darstellung speicherbezogener Profiling-Metriken

vii

nützlich, z. B. die Anzahl der Aufzeichnungen pro Speicherzuweisung oder Projektionen
in andere Bereiche, wie den Framebuffer oder die Szenengeometrie.
In dieser Arbeit wird eine neue Methode zur genauen Simulation der GPU-Speicher-

pipeline vorgestellt. Die Methode verwendet Speicherprofile, die von der dynamischen
Binärinstrumentierung exportiert werden, die auf bereits kompilierten GPU-Programmen
angewendet werden kann, ähnlich wie bei Standard-Profilern. Die exportierten Speicher-
profile können für Performanz-Visualisierungen in individuellen Domänen verwendet
werden, ebenso wie für herkömmliche Speicher-Profiling-Metriken, die jedoch in feinerer
Granularität als üblich angezeigt werden können. Insbesondere ist eine Methode zur Ab-
bildung von Speichermetriken auf die ursprüngliche Szene enthalten, die es dem Benutzer
ermöglicht, Profiling-Ergebnisse innerhalb der Szenendomäne zu untersuchen. Dies macht
den Profiling-Prozess intuitiver. Darüber hinaus wird in dieser Arbeit eine neuartige kom-
primierte Ray-Tracing-Implementierung vorgestellt, die ihren Speicherbedarf optimiert,
indem sie Annahmen über die topologischen Eigenschaften der zu rendernden Szene
trifft. Die Ergebnisse können verwendet werden, um eine breite Palette von Ray-Tracing-
und Ray-Marching-Anwendungen auf benutzerfreundliche Weise zu bewerten und zu
optimieren.

viii

Contents

I. Synopsis 1

1. Introduction 3
1.1. Motivation . 3
1.2. Contribution Overview . 5

2. Background 9
2.1. Ray Tracing . 9

2.1.1. Intersections . 9
2.1.2. Bounding Volume Hierarchies . 11
2.1.3. BVH Quality Metrics . 14

2.2. Compression in Computer Graphics . 16
2.2.1. Polygonal Mesh Formation . 16
2.2.2. Mesh Representations . 17
2.2.3. Cut-Border Machine . 19
2.2.4. Structured Primitives . 20
2.2.5. Compressed BVH . 21

2.3. GPU Architecture . 21
2.3.1. Units of Execution . 21
2.3.2. Memory Spaces . 23
2.3.3. Binary Instrumentation . 26
2.3.4. GPU Simulation . 27

2.4. Performance Visualization . 28
2.4.1. Information Visualization . 29
2.4.2. The HAC Model . 30

3. Papers and Contributions 33
3.1. Fine-Grained Memory Profiling of GPGPU Kernels 34

3.1.1. Motivation and Contributions . 34
3.1.2. Methods and Findings . 35

ix

3.1.3. Discussion . 36
3.1.4. Individual Contributions . 38

3.2. Profiling and Visualizing GPU Memory Access and Cache Behavior of Ray
Tracers . 39
3.2.1. Motivation and Contributions . 39
3.2.2. Methods and Findings . 40
3.2.3. Discussion . 41
3.2.4. Individual Contributions . 43

3.3. Reconstructing Bounding Volume Hierarchies from Memory Traces of Ray
Tracers . 44
3.3.1. Motivation and Contributions . 44
3.3.2. Methods and Findings . 45
3.3.3. Discussion . 45
3.3.4. Individual Contributions . 46

3.4. In-Situ Profiling Feedback for GPGPU Code 47
3.4.1. Motivation and Contributions . 47
3.4.2. Methods and Findings . 47
3.4.3. Discussion . 48
3.4.4. Individual Contributions . 48

3.5. A Visual Profiling System for Direct Volume Rendering 49
3.5.1. Motivation and Contributions . 49
3.5.2. Methods and Findings . 49
3.5.3. Discussion . 50
3.5.4. Individual Contributions . 51

3.6. GPU Ray Tracing of Triangular Grid Primitives 52
3.6.1. Motivation and Contributions . 52
3.6.2. Methods and Findings . 53
3.6.3. Discussion . 54
3.6.4. Individual Contributions (Poster Paper) 55
3.6.5. Individual Contributions (Unshortened Version) 55

3.7. Compression of Non-Manifold Polygonal Meshes Revisited 56
3.7.1. Motivation and Contributions . 56
3.7.2. Methods and Findings . 57
3.7.3. Discussion . 58
3.7.4. Individual Contributions . 59

4. Discussion 61
4.1. Summary of Contributions . 61

x

4.2. Limitations . 62
4.3. Future Work . 62

II. Publications 73

5. Peer-Reviewed Publications 75
5.1. Fine-Grained Memory Profiling of GPGPU Kernels 77
5.2. Profiling and Visualizing GPU Memory Access and Cache Behavior of Ray

Tracers . 79
5.3. Reconstructing Bounding Volume Hierarchies from Memory Traces of Ray

Tracers . 81
5.4. A Visual Profiling System for Direct Volume Rendering 83
5.5. A GPU Ray Tracing Implementation for Triangular Grid Primitives 85
5.6. Compression of Non-Manifold Polygonal Meshes Revisited 87

6. Unpublished Works 89
6.1. In-Situ Profiling Feedback for GPGPU Code 91
6.2. GPU Ray Tracing of Triangular Grid Primitives 93

7. Complete Publication List 95
7.1. Core Publications . 95
7.2. Archiving of Cultural Heritage Images . 97
7.3. Scanning System for Tensile Testing Specimens 98
7.4. Miscellaneous . 99

xi

List of Figures

1.1. The structure of individual contributions in this thesis. 5

2.1. Example BVH and its construction process over a set of triangles. 12
2.2. Two BVH quality metrics illustrated on the scene from Fig. 2.1. 15
2.3. Illustation of the half-edge data structure using a polygonal mesh. 17
2.4. Illustation of cut-border operations. 18
2.5. A diagram of most NVIDIA architectures. 22
2.6. Diagram of a direct-mapped cache with a write-back policy and four lines. 24
2.7. This diagram illustrates the manner in which the trampoline interacts with

the original program in dynamic binary instrumentation. 26
2.8. The HAC model. 29

xiii

Part I.

Synopsis

1

1. Introduction

This thesis focuses on visual representations of memory profiling metrics evaluated on
GPU ray tracers. The motivation for this topic is presented below, followed by an outline
of the thesis structure.

1.1. Motivation

Ray tracing is a rendering technique that is becoming increasingly important in the
process of transforming three-dimensional scenes into images. These 3D models can
result from 3D scans or can be modeled for CAD purposes or for use in video games.
Ray tracing represents a foundational approach for numerous applications that utilize
computer graphics. Consequently, it is a methodology with a multitude of applications in
modeling, entertainment, and medicine. Ray tracing is increasingly replacing classical
rasterization pipelines for rendering due to its superior capabilities in physically correct
rendering [PJH17]. The primary distinction between rasterization and ray tracing is the
direction in which the geometry is processed, from the scene to the image. Rasterization
takes the set of all primitives of the geometry and transforms it into the coordinate system
of the image. The rasterizer draws each 2D-transformed primitive into the image by filling
pixels inside the primitive and then applies shading on a pixel-level. This approach can
be easily accelerated through parallelization, as the transformation of the input data and
shading on a pixel-level is data-parallel [HS86]. In contrast, ray tracing defines rays in
the image domain, pointing towards the scene from the actual perspective. These rays are
then intersected with the set of primitives independently, which makes the approach more
computationally inefficient. However, tree-based spatial acceleration structures reduce
the complexity of intersecting the scene from linear to logarithmic. Such an acceleration
structure requires that each ray has its own control path, making ray tracing a task parallel
problem. Consequently, parallelization is typically performed on each ray. Moreover, the
utilization of such an acceleration structure results in incoherent memory accesses due
to the random access of vertices. The total amount of available memory also serves as a
hardware limitation, setting an upper bound on the amount of available scene geometry

3

and typically restricting the scene resolution.
Graphics processing units (GPUs) are specialized processors that are optimized for

data-parallel operations, allowing for the execution of a large number of threads in
parallel [NVI22]. They consist of multiple independent multiprocessors, similar to those
found in central processing units (CPUs), which are further subdivided into data-parallel
units. Each device has its own random access memory (RAM), which is typically cached
using two layers residing on the device and on each multiprocessor. The program executed
on a GPU, called a kernel, describes the work that is executed on one thread in parallel.
Parallelizing ray tracing on such devices is a non-trivial problem, due to the extensive
use of data-parallelism. It is therefore important to avoid diverging code paths in order
to achieve optimal performance. Moreover, incoherent memory accesses may be made
sequential, which can result in inefficient cache utilization, a phenomenon that is similar
to that observed in CPU architectures.
General-purpose profilers, such as Nsight Compute for NVIDIA architectures, may be

employed to quantify inefficiencies in GPU-based computations. These profilers utilize
hardware counters, specifically those recorded by the memory management unit (MMU),
to account for the number of memory accesses or hits into the special-purpose register file
of the GPU. However, this implementation has the disadvantage of accumulating various
causes of inefficiency to the granularity of a kernel call. If a kernel executes multiple
memory operations, such as a matrix multiplication that loads entries from two matrix
objects, the memory metrics of both accesses are accumulated. This effect is manageable
for smaller kernels, but larger kernels become difficult to optimize, even for experienced
GPU developers. Moreover, manual analysis is usually very time-consuming.

This thesis proposes a pipeline that enables software engineers to identify the root cause
of inefficiencies in their kernels by obtaining profiling values at a finer granularity. The
most granular level of profiling would be the memory access itself. However, these profiling
values are not natively available, and therefore require simulation of critical parts of the
memory pipeline in software. This allows for the assignment of a tag to each memory
access, indicating whether it was a hit or a miss in the cache. These fine-grained tags permit
arbitrary accumulations, including per-kernel accumulation, which facilitates validation of
the simulator against the proprietary profiler. Using such a simulation framework, several
domains of profiling metrics are defined, including textual per-allocation metrics and
visualized metrics for the to-be-rendered scene, rendered image, or source code. Our
approach can be utilized to analyze a diverse array of GPU applications, with a particular
emphasis on ray tracing implementations, in a comprehensive visual representation to
facilitate program optimization.
Memory capacity issues in ray tracing can be addressed by employing compression

techniques that are both simple and structured in such a way that they can be reconstructed

4

on-the-fly on the GPU during ray tracing. The initial step typically involves the removal
of unnecessary references from the BVH tree data structure [Wal+01] or the storage
of multiple primitives in a leaf instead of the full storage of a deep BVH representation.
Geometry can be compressed by quantizing vertices or re-arranging primitive vertices and
the respective connectivity information in a locally structured way that allows for implicit
vertex access. This technique, known as micro mesh rendering, has been described in
recent works [BP23]. It is currently implemented in proprietary hardware, which limits
its accessibility. This thesis also presents an approach to rendering of compressed scene
geometry on GPUs employing a pure software implementation.

1.2. Contribution Overview

Fine Grained Pro-
filing (Section 3.1)

Visual Profiling
(Section 3.2)

In-Situ Profiling
(Section 3.4)

Visual DVR Profil-
ing (Section 3.5)

BVH Recon
(Section 3.3)

Trianglular Grids
(Section 3.6)

Mesh Compres-
sion (Section 3.7)

Performance Visualization

Ray Tracing

GPU Memory

Compression

Figure 1.1.: The contributions of this thesis are represented graphically as nodes with
their relationships as edges. Solid lines indicate a strong relationship, while
dashed lines indicate a conceptual relationship. The color red is employed
to represent unpublished works, whereas blue is utilized to indicate peer-
reviewed works. The boxes serve to group multiple nodes into their individual
categories.

5

This section categorizes the contributions and summarizes their relationships. Figure 1.1
shows a diagram of these categories and contributions. The categories of GPU memory,
ray tracing, compression, and performance visualization were selected to describe the
motivation of this thesis, which aims to present visual insights into the GPU memory
behavior of various ray-tracing configurations that incorporate on-the-fly compression
techniques.

GPU Memory This thesis is based on the work on fine-grained profiling [BGF22], which
is summarized in Section 3.1. The work models parts of the memory pipeline in modern
GPU architectures. It introduces a technique for extracting operation-wise memory profil-
ing values that can be accumulated to coarser representations such as per-allocation or
traditional per-program metrics. This work also provides a foundation for the visual profil-
ing tools presented in this thesis. The visual profiler for direct volume renderers [Bue+24],
summarized in Section 3.5, is able to use these operation-wise annotations and accumulate
them in the image domain for each pixel individually. A profiling application for surface
ray tracers [Bue+22a], summarized in Section 3.2, additionally accumulates profiling
values in the 3D scene domain by assigning profiling values to triangles and encoding
them using color mapping. In addition to its application in ray tracing, the toolkit can also
be utilized to incorporate in-situ profiling metrics directly into the source code [PBS24], as
demonstrated in Section 3.4. This can assist software developers during implementation.

Ray Tracing The visual profiling systems concentrate on ray-tracing implementations,
which renders the aforementioned papers pertinent to this category. Furthermore, this
thesis presents a BVH reconstruction technique [Bue+22b], which is summarized in
Section 3.3. This technique may be utilized as an optional extension to the visual profiler,
allowing for a more abstraction representation of internal BVH data structures utilized
by individual surface ray tracers. Additionally, we investigated ray tracing in a special
scenario that assumes meshes of triangular grids as geometry [Bue24; BKF23], which is
summarized in Section 3.6. The implementation is able to render triangularly structured
grids directly on GPUs. Since such grids require fewer bytes than lists of triangles, the
compression of the memory footprint of the ray tracer is possible, which allows for the
rendering of higher resolution meshes.

Compression The triangular-grid ray tracer employs a compressed representation of
mesh connectivity to reduce memory requirements, as previously described. A more
comprehensive examination of mesh compression [BGG17], which is summarized in

6

Section 3.7, describes an advanced single-rate compression technique that highlights the
potential of connectivity compression on polygonal meshes.

PerformanceVisualization The central applications described in this thesis are presented
in the visual profiling paper, the in-situ code profiling paper, and the DVR profiling
paper. All of these papers emply performance visualization techniques and apply domain
transformations from the hardware domain to the application domain as described by
Schulz, Levine, Bremer, Gamblin, and Pascucci [Sch+11]. The specialized ray tracer,
presented in Fig. 1.1, which aims to optimize the memory utilization of the computing
device, may be evaluated with performance visualization in future work.

Structure The sections in Chapter 3 start with the fine-grained profiler in Section 3.1 as a
basis, as indicated in Fig. 1.1. Then, the visual profiling work is summarized in Section 3.2
as it can be seen as an application of the fine-grained profiling technique evaluated on
a set of individual ray tracing configurations. The BVH reconstruction approach, which
extends the visual profiler to handle arbitrary BVH data structures, is summarized in
Section 3.3. Section 3.4 summarizes the application of the profiler for in-situ code profiling,
while Section 3.5 summarizes its application to DVR. Finally, in Section 3.6, the work
on triangular grid ray tracing is summarized as another ray-tracing implementation that
builds on the connectivity compression techniques, which are discussed in more detail in
Section 3.7.

7

2. Background

This chapter presents the theoretical background for this thesis. It begins with a detailed
description of ray tracing (Section 2.1), followed by an explanation of compression basics
in Section 2.2. It then addresses GPU architecture (Section 2.3), and finally, fundamental
performance visualization techniques (Section 2.4).

2.1. Ray Tracing

Ray tracing is a rendering concept that employs a set of rays sent out into a scene in
reverse direction as physical photons to render an arbitrary definition of geometry into
a two-dimensional image. This approach has been proven to be physically correct, i.e.,
tracing in inverse photon direction, a century before and is known as the Helmholtz
Reciprocity [Hel67]. The earliest computational approaches for ray tracing were developed
by Appel [App68] and Whitted [Whi79]. Building upon these foundational principles,
ray tracing has been the subject of extensive research in various domains, including
the development of more accurate physical reflectance models [Nic+77], the pursuit of
enhanced performance or the adaption of this technique to novel applications [Kel+13].
The following sections will first provide a theoretical overview of ray tracing, before delving
into the specifics of its performance optimization.

2.1.1. Intersections

In its formal definition, ray tracing is the process of identifying the point of intersection
between arbitrary geometry and a ray for each pixel in the framebuffer, which represents
the final rendered image. Let r⃗ : R→ R3 be a ray with origin position o⃗ ∈ R3 in direction
d⃗ ∈ R3, such that ∥d⃗∥2 ≤ 1, defined as

r⃗(t) = o⃗+ td⃗. (2.1)

Moreover, let T :
(︁
R3,R3

)︁
→ R be the function for geometry intersection, defined as

T (o⃗, d⃗), which returns the ray parameter t of the closest intersection. In the majority of

9

cases, the geometry is a list of primitives with each primitive p having their corresponding
intersection functions Tp :

(︁
R3,R3

)︁
→ R. In this case it is defined as

T (o⃗, d⃗) = min
p

Tp(o⃗, d⃗). (2.2)

In the following, the term t is used for simplicity, which should represent the function
T (o⃗, d⃗) in any case.

Triangles In computer graphics, triangles are the most prevalent primitive shape, as they
represent the most concise definition of a surface. This is because most other primitive
shapes can be reduced to a set of limit triangles with minimal effort. A very typical and
fast intersection has been described by Möller and Trumbore [MT97]. Triangles are
usually defined using their corner vertices {v0, v1, v2} with vi ∈ R3. Let u, v, w ∈ R, such
that u+ v+w = 1, be barycentric coordinates [Möb27] that express coordinates within a
triangle as a convex linear combination

p(u, v) = wv0 + uv1 + vv2 = v0 + u(v1 − v0) + u(v2 − v0). (2.3)
Intersecting the ray with the plane that is defined by the triangle corners is done by solving
r(t) = p(u, v) for u, v and t:

o⃗+ td⃗ = v0 + u(v1 − v0) + v(v2 − v0) (2.4)
⇔ o⃗− v0 = t(−d⃗) + u(v1 − v0) + v(v2 − v0) (2.5)

⇔ o⃗− v0 =
[︂
−d⃗ (v1 − v0) (v2 − v0)

]︂⎡⎣tu
v

⎤⎦ (2.6)

Given the definitions A =
[︂
−d⃗ (v1 − v0) (v2 − v0)

]︂
and b = o⃗−v0, the triple product,

and Cramer’s rule [Cra50], we can solve A
[︁
t u v

]︁T
= b:

[︁
t u v

]︁
=

[︁
det
[︁
b A∗,1 A∗,2

]︁
det
[︁
A∗,0 b A∗,2

]︁
det
[︁
A∗,0 A∗,1 b

]︁]︁
detA

(2.7)

=
(o⃗− v0)

T
[︂
(v1 − v0)× (v2 − v0) d⃗× (v2 − v0) (v1 − v0)× d⃗

]︂
(v1 − v0) ·

(︂
d⃗× (v2 − v0)

)︂ (2.8)

If the determinant of A is zero, then the ray is parallel to the triangle and no meaningful
solution exist. Additionally, u and v can be used to check if the ray intersects the triangle:
u+ v ≤ 1 ∧ u ≥ 0 ∧ v ≥ 0.

10

Spheres A sphere with origin c⃗ ∈ R3 and radius R ∈ R can be defined with the locus of
all points x⃗ ∈ R, fulfilling

∥x⃗− c⃗∥22 = R2. (2.9)
In order to find the parameters of an intersecting ray, we set x⃗ = r⃗(t), resulting in

∥o⃗+ td⃗− c⃗∥22 −R2 = 0. (2.10)

Solving this quadratic form results in the interval of the intersection parameters [t0, t1],
with

t0 = −d⃗ · (o⃗− c⃗) +
√
δ (2.11)

t1 = −d⃗ · (o⃗− c⃗)−
√
δ. (2.12)

The discriminant is defined as

δ =
(︂
d⃗ · (o⃗− c⃗)

)︂2
− (o⃗− c⃗)2 +R2. (2.13)

If δ < 0, no solution exists and the ray does not intersect the sphere.

Axis-Aligned Bounding Boxes An axis-aligned bounding box (AABB) is typically defined
as the lower bound l⃗ and upper bound u⃗ that span the axis-aligned volume. Intersections
against an axis-aligned bounding box are essentially accomplished by successively inter-
secting against three one-dimensional bounding slabs [l⃗i, u⃗i]. Without loss of generality,
let the ray and the bounding box be considered one-dimensional, where i represents an
arbitrary dimension:

ri(t) = oi + tdi. (2.14)
Considering the lower bound l⃗i, Eq. (2.14) solves to tl,i = (l⃗i−oi)/di and tu,i = (u⃗i−oi)/di

for the upper bound u⃗i. For a single bounding slab, the intersection parameter interval
is then [ri, si] with ri = min{tl,i, tu,i} and si = max{tl,i, tu,i}. The parameter interval
of all slabs is then [t0, t1] = [min{r0, r1, r2},max{s0, s1, s2}]. Intersecting these types
of bounding boxes is essential for most bounding volume hierarchies, described in the
following.

2.1.2. Bounding Volume Hierarchies

While the previous definition of a ray tracing can be implemented in a straightforward
manner, it is rather inefficient, as each ray traverses the list of primitives in Eq. (2.2),

11

f0

f1

f2

f3 f4

f5

(a) Scene consisting of a set of triangles fi.

f0

f1

f2

f3 f4

f5

s0 s1 s2 s3 s4

(b) Possible splits si along the horizontal axis.
Dots are centroids.

f0

f1

f2

f3 f4

f5

b0

b1

b2

b3

b4

(c) Recursive boundaries of AABBs.

b0

b1 = {f1, f0} b2

b3 = {f2, f3} b4 = {f5, f4}

(d) Polytree of the corresponding BVH (c).

Figure 2.1.: Example BVH and its construction process over a set of triangles.

12

which has a computational complexity of O(n) for the number of primitives. In order
to reduce computational complexity, so-called bounding volume hierarchies (BVH) have
been developed. These prevent intersecting the entire geometry per ray, reducing the
complexity to O(log n) [Mei+21]. A BVH can be defined as an acceleration structure,
that exploits the relationship between t and the arrangement of primitives in the scene.
It is implemented as a tree data structure that recursively wraps groups of primitives
into bounding volumes, where each bounding volume forms a node in the tree. The leaf
nodes of the BVH contain the primitives. A bounding volume fully encloses all primitives
within. A two-dimensional illustration of a BVH utilizing AABB volumes can be found in
Fig. 2.1d and a comprehensive literature review of various types of BVHs was conducted
by Meister, Ogaki, Benthin, Doyle, Guthe, and Bittner [Mei+21].
Let G = (V,E) be a polytree with nodes V and arcs E ⊆ {(x, y) ∈ V 2 | x ̸= y}. The

path between two nodes a, b is defined as

p(a,b) ⇔ ∃(v0, v1, ..., vn) ∈ V n : v0 = a ∧ vn = b ∧ (vi, vi+1) ∈ E. (2.15)

Moreover, the node a is a leaf if

la ⇔ ∀(x, y) ∈ E : x ̸= a. (2.16)

Then, the set of leaves for the subtree based on node v is defined as

Lv = {x ∈ V | p(v,x) ∧ lx}. (2.17)

As a last step, we define the set of all rays that intersect against a primitive p as

Rp = {(o⃗, d⃗) ∈ (R3,R3) | Tp(o⃗, d⃗) is defined}. (2.18)

The previously mentioned property, that all leaves are recursively enclosed by their
parent volumes can be formalized as

∀v ∈ V : ∀l ∈ Lv : Rl ⊆ Rv. (2.19)
It is typical for bounding volumes to be convex, as more sophisticated bounding volumes

tend to be more computationally inefficient to intersect. However, as long as Eq. (2.19)
holds, arbitrary types of bounding volumes are permitted.

Traversal Let Ta(o⃗, d⃗) be a recursively defined function that intersects node a ∈ V and
all its children, while r ∈ V is the root of the BVH.

13

Proposition 1. For each subtree a, the BVH traversal corresponds to the intersection by naive
iteration all primitives of the subtree’s leaves La.

min
l∈La

Tl(o⃗, d⃗) = Ta(o⃗, d⃗) (2.20)

Especially, if a = r, then T (o⃗, d⃗) = Tr(o⃗, d⃗) follows from Eqs. (2.2) and (2.20).
Proof. The base case is if la applies, then node a contains only primitives and the overall
intersection corresponds to intersection of a list of primitives Ta(o⃗, d⃗) = minp Tp(o⃗, d⃗) =

T (o⃗, d⃗). For an inner node a with children (a, ci) ∈ E, the equality Tci(o⃗, d⃗) = T (o⃗, d⃗) is a
direct implication of Eq. (2.19).

Construction BVHs are typically constructed through recursive space splitting of ordered
primitives. Considering the example scene comprising six triangles in Fig. 2.1a. Primitive
sorting is a crucial initial step in BVH construction. This process involves arranging the
primitives in a specific order, typically based on their centroids along each axis. This
approach is exemplified in Fig. 2.1b, which depicts the sorting of the primitives in the
aforementioned example. Given this sorting, there are multiple options for potential
splits si, that subdivide the scene into two parts. One possible strategy is using median
splits, which always choose the split axis at the median, s2 in our example. However, a
natural goal of BVH construction is minimizing the empty space in a BVH, making s1 a
more optimal choice here. We describe strategies that can adapt to more optimal metrics
in Section 2.1.3. Given split axis s1, two bounding volumes are created around both
separated parts as illustrated in Fig. 2.1c. The construction then recurses on both parts
until termination criteria are met, in our case when less than three triangles in a leaf are
reached. The corresponding BVH polytree, which is actually represented in memory, can
be observed in Fig. 2.1d.

2.1.3. BVH Quality Metrics

Surface Area Heuristic The surface area heuristic (SAH), described by MacDonald
and Booth [MB90] and Goldsmith and Salmon [GS87], is based on the idea that
probability of hitting a node n ∈ V of the BVH is proportional to the surface area of
n [SK04]. According to Wald, Mark, Günther, Boulos, Ize, Hunt, Parker, and
Shirley [Wal+07], given n is known to be intersected, the probability of intersecting a
child c of that node (n, c) ∈ E is based on the fraction of their surface areas Ac and An

p(c | n) = Ac

An
. (2.21)

14

f0

f1

f2

f3 f4

f5

(a) Visualization of the surface area evaluated
for SAH for two splits from Fig. 2.1b s0
(dashed red) and s1 (solid blue).

f0

f1

f2

f3 f4

f5

(b) The End-Point Overlap for bounds b3 and
b4 from Fig. 2.1c illustrated as the pattern
within the other bounding volume.

Figure 2.2.: Two BVH quality metrics illustrated on the scene from Fig. 2.1.

Let L be the set of primitives within the node n that are on the left side of a split si,
meaning the centroids of the primitives cp are smaller than the split cp < si, and R all
remaining primitives within that node, as illustrated in Fig. 2.2a. Moreover, cp is the cost
of intersecting a primitive and cv is the cost of intersecting the volume of an BVH node.
Based on these cost parameters, the cost cn of intersecting that node is defined as

cn = cv + cp

(︄
|L|
∑︂
c∈L

p(c | n) + |R|
∑︂
c∈R

p(c | n)

)︄
= cv +

cp
An

(︄
|L|
∑︂
c∈L

Ac + |R|
∑︂
c∈R

Ac

)︄
.

(2.22)
Two distinct split configurations are illustrated in Fig. 2.2a, with the red-dashed marked
configuration exhibiting a markedly inferior efficiency compared to the blue solid-line
marked configuration. This is due to the greater total surface area of the former, which
results in a greater cost function. Given this cost term and further incorporating the
cost of intersecting primitives, we can evaluate the SAH cost CSAH for the whole BVH,
which roughly corresponds to the work of MacDonald and Booth [MB90]. Here, Nn

corresponds to the number of primitives in a leaf n ∈ L ⊆ V and Ar represents the surface
area of the root:

CSAH =
1

A r

(︄
cv
∑︂
n∈V

An + cp
∑︂
n∈L

NnAn

)︄
. (2.23)

End-Point Overlap Aila, Karras, and Laine [AKL13] describe the quality metric end-
point overlap (EPO). It is employed to evaluate the surface area of primitives O that are
geometrically within a BVH node, but not logically within the subtree of that node. The

15

objective of this metric is to penalize overlapping regions that may result in the traversal
of both BVH nodes for a single ray. Let S be the set of all primitives and AS the total
surface of these primitives∑︁p∈S Ap, then

CEPO =
∑︂
n∈V

cn
AOn

AS
(2.24)

is the EPO cost that relies on the set of previously mentioned nodes On = (S \ Ln) ∩ n,
where Ln is the set of primitives within a subtree of a node n. The area of this overlap is
depicted in the pattern-shaded regions in Fig. 2.2b. While the SAH allows for the iterative
construction of a BVH using Eq. (2.22), the EPO metric necessitates the construction of
the BVH in advance. One possible approach to integrating the EPO into BVH construction
is to utilize temporary subtrees [WG17]. The correlation of a combination of SAH and
EPO to the performance of a ray tracer averages to 0.979, while for SAH alone it averages
to 0.933 [AKL13].

2.2. Compression in Computer Graphics

Ray tracing is based on several data structures, which store information about the scene
and acceleration structures. This section describes simple formations of these structures,
which already vary in entropy. It then continues with compression techniques of scene
primitives and the BVH structure.

2.2.1. Polygonal Mesh Formation

A mesh consists of a set of vertices defining the geometry and their connectivity. Mathe-
matically, a mesh can be seen as a planar graph G = (V,E) and its embedding F . V , E,
and F have the relationship |V | − |E|+ |F | = 2 for bounded convex polyhedrons [Dae09].
A typical data structure that implements fast polygonal mesh connectivity queries is the
half-edge data structure [Ber+08], illustrated in Fig. 2.3. It replaces each undirected
edge {a, b} ∈ E in G with two arcs (a, b) ∈ E′ and (b, a) ∈ E′ in the directed graph
G′ = (V,E′). This happens in a way that the edge adjoins two embeddings such that a
directed cycle of arcs fi = {{(v0, v1), (v1, v2), ..., (vn, v0)} ⊆ E′} forms an embedding. On
boundaries, {a, b} is only replaced by the single arc of the corresponding embedding. A
mesh is considered two-manifold, if each half-edge (a, b) ∈ E′ is an element of exactly one
embedding fi. If a half-edge is an element in multiple embeddings fi, it is considered
non-manifold. Based on G′, the half-edge data structure defines the following essential

16

v0

v1

v2

v5

v4

v3

Figure 2.3.: Illustation of the half-edge data structure using a polygonal mesh
consisting of a triangle {(v0, v1), (v1, v2), (v2, v0)} and a pentagon
{(v1, v0), (v0, v5), (v5, v4), (v4, v3), (v3, v1)}. The origin vertex of an edge is
marked as the vertex at the origin of the arrow. The next edge can be found
by following the path on a cycle of arrows one step. The only twin edge is
between v0, v1 and highlighted by two arrows pointing in opposite directions.

functions. Common half-edge functions like the destination vertex or the previous edge
can be trivially derived from the essential ones.

Next Edge Let ni : fi → fi be a function that returns the next edge of a polygon fi with
definition

ni(v0, v1) = (v1, v2). (2.25)

Twin Edge Let t : E → E be a function that returns the adjacent edge with definition

ti(v0, v1) = (v1, v0). (2.26)

Origin Vertex Let o : E → V be a function that returns the origin vertex of an edge with
definition

o(v0, v1) = v0. (2.27)

2.2.2. Mesh Representations

One fundamental method of compression is the application of distinct standard mesh
representations. The subsequent section presents three prevalent types of mesh represen-
tations.

17

(a) new vertex (∗) (b) conn. forward (→) (c) conn. backward (←)

(d) border (_) (e) spliti (∞i) (f) unionp,i (∪pi)

Figure 2.4.: Illustation of cut-border operations [Gum99] on a grid-structured triangle
mesh. The cut-border is highlighted as a bold blue cycle and the gate is
marked as an arrow. The current triangle is shaded in light red and its corre-
sponding adjacent vertex is represented by a red dot. It should be noted that
the illustration of the union operation (f) is intended only as an example, as it
does not result from a natural traversal using the cut-border machine, which
requires a geometrical genus.

Triangle Array The triangle array encodes each triangle explicitly as the tuple (v0, v1, v2)
consisting of the three corner vertices vi. Despite its simplicity, this representation is
known to be storage-inefficient, as vertices are encoded repeatedly depending on their
valency in a triangle fan. Furthermore, this representation lacks connectivity information,
which must be inferred from geometry.

Indexed Triangle List The indexed triangle list encodes a triangle as the tuple (i0, i1, i2),
where i ∈ N is an index to a list of vertices {vi | i ∈ N}. This representation offers
two significant advantages. First, each vertex is stored only once, reducing the storage
requirements. Second, the connectivity can be inferred from vertex indices. From a
computational perspective, the indexed triangle list introduces a secondary indexing layer
to the representation, necessitating further loading of the index. However, this secondary
indexing layer has a positive effect on caching due to more frequent accesses on a single
vertex stored in memory.

18

Triangle Strips A triangle strip is a data structure that encodes multiple triangles that
share connectivity in the form of a strip. It is defined by the tuple (v0, v1, ..., vn), which has
the property that each combination (v0, vi+1, vi+2), i ∈ [0, n− 2] forms a triangle. Triangle
strips can be considered a synthesis of the strengths and weaknesses of indexed triangle
lists and triangle arrays as the secondary indexing layer is omitted and redundancies are
partly avoided. If the mesh consists of polygons with a higher number of edges than three,
triangle strips can be employed to encode these polygons [BGG17]. A strip itself is always
defined to be a two-manifold.

2.2.3. Cut-Border Machine

The cut-border machine (CBM) of Gumhold and Strasser [GS98] is a single-rate mesh
connectivity compression approach that employs a set of symbols to unambiguously en-
code a depth-first traversal of a triangle mesh. It is coarsely related to the triangle strip
representation from Section 2.2.2 and is therefore limited to two-manifold meshes. The in-
ternal state of the CBM is a list of cut-border parts, which store edges that separate between
the already encoded region of the mesh and the outstanding region as shown in Fig. 2.4. A
cut-border part employs a stack data structure [Lan98] along with additional non-essential
operations for splitting and merging of multiple stacks. The traversal commences with
an arbitrary triangle, which is encoded and initialized as a new cut-border part, along
with its edges. Subsequently, the CBM iteratively examines the top edge of the current
part, designated as the gate. This examination identifies six distinct operations given the
vertex that is adjacent to the gate, which are illustrated in Fig. 2.4. Each operation is
represented by a unique symbol.

New Vertex The new vertex operation is encoded when the adjacent vertex is not yet part
of any cut-border part. To avoid traversing all cut-borders for identifying this operation, a
per-vertex map can be used to flag each vertex if it was already encoded. Furthermore,
the new vertex operation encodes attributes corresponding to the adjacent vertex.

Connect Forward The connect forward operation is encoded if the adjacent vertex is the
next element of the current cut-border part. This operation does not initiate encoding of
a vertex attribute, as all vertices of this triangle were already encoded.

Connect Backward The connect backward operation is similar to the connect forward
operation, except that it checks, if the adjacent vertex is the previous element of the current

19

cut-border part. As the gate is always located at the top of the stack, this effectively means
that it checks for the last element on the stack.

Border The border operation was introduced to allow for encoding meshes with holes. It
encodes that the gate has no adjacent vertex due to the connectivity.

Split The split operation is encoded if the adjacent vertex is on the current cut-border
part, but neither the previous nor the next one. In order to permit the reversal of this
operation during decoding, it encodes the offset within the current cut-border part’s stack.
This operation naturally creates a hole into the current cut-border part as edges of the
adjacent vertex shares no connectivity to the cut-border. The cut-border machine handles
this case by moving all edges within the hole to a new part to continues traversal on that
new part.

Union The merge operation reverses a split. It is encoded if the adjacent vertex is on
another part. Therefore, the index of the part must be encoded additionally. A merge
operation gets only encoded if a mesh has a genus and the number of merge operations is
always equal to the genus [GS98].

2.2.4. Structured Primitives

A recent approach to compressed ray tracing involves the use of structured primitives on
simplified meshes [MMT23]. One advantage of this approach is that structured prim-
itives have a smaller memory footprint, as their topology can be described implicitly.
The concept itself is not a recent innovation; it has its roots in the definition of displace-
ment maps [Coo84] and subdivision surfaces [CC78]. These techniques assume a fixed
structure that can be refined recursively using geometry from neighboring vertices and
continuity assumptions. Although this traditional representation can be traversed on the
GPU [Ben+07], it tends to be very inefficient due to the explicit storage of intermediate
primitives on a traversal stack. Consequently, further caching implementations are re-
quired. Displacement maps, however, have the advantage that they are not necessarily
defined recursively and can therefore be implemented efficiently on a GPU [Tho+21].
More recent approaches, however, restrict to static structured grid representations

that encode geometry for each vertex in the grid [SB87]. Typical grid structures include
quads [BVW21] and triangular grids. Ray tracing of triangular grid primitives is also
referred to as micro mesh ray tracing. This technique can be implemented efficiently on a

20

GPU [BP23; NVI23; MMT23] using specialized hardware, which limits its availability to
end-users.

2.2.5. Compressed BVH

BVH compression is typically achieved by quantizing the values of the bounding volumes.
This can be accomplished in a hierarchical manner, with each BVH node is quantized
in relation to its parents [SE10; WMZ22]. While quantizing the BVH volumes reduces
memory traffic, it naturally increases the EPO (Section 2.1.3), which in turn makes tracing
less efficient. A further disadvantage of a recursively quantized BVH is that reconstructed
nodes potentially need to be stored on the traversal stack, which increases incoming
memory traffic by magnitudes of order. Moreover, the data structure of a BVH itself can also
be compressed by squashing multiple levels of binary nodes into multi-nodes [Ben+18]. An
alternative approach is to store the BVH implicitly by rearranging the geometry in memory
in such a way that primitives can be used to describe the bounds of BVH nodes [Eis+12].
While hybrid representations do exist, the complete omission of all geometric information
makes it impossible to use efficient heuristics like the SAH for construction [SE10]. As
previously described, traversing the BVH requires a traversal stack, which can also be
compressed in order to reduce traffic to the underlying memory [VWB19].

2.3. GPU Architecture

This section presents the essential elements of typical GPU architectures. While the focus
is on NVIDIA architectures, the descriptions, particularly those of the logical perspective
on units of execution, can be adapted to other platforms, such as those of AMD or Intel.
The following employs the CUDA terminology and additionally presents the OpenCL terms
where applicable.

2.3.1. Units of Execution

In OpenCL, a GPU is referred to as a compute device, which also encompasses accelerators
such as field-programmable gate arrays (FPGAs). A GPU can be logically and physically
subdivided into multiple layers of execution units. A program for a GPU is comprised of
two distinct components: the program that is executed on the GPU, namely the kernel,
and the program that is executed on the host system to manage memory initialization
and program execution. Consequently, the driver API utilizes a stream (referred to as a
command queue in OpenCL) to transmit kernel code to the GPU.

21

GPU

DRAM

L2 cache

SM 0 SM 1

L1 cache L1 cache

Block 0 Block 1 Block 2 Block 3

t0 t1
... t31 t0 t1

... t31 t0 t1
... t31 t0 t1

... t31

t0 t1
... t31 t0 t1

... t31 t0 t1
... t31 t0 t1

... t31

Grid

Figure 2.5.: A diagram of most NVIDIA architectures. Hardware components are indi-
cated by solid black borders, and memory communication with arrows. The
memory itself is shaded in green and execution units are marked in blue.
Software-side concepts are indicated by dashed gray borders. Each row of
32 threads is referred to as a warp.
Adapted from the work of BUELOW, RIEMANN, GUTHE, and FELLNER [Bue+22a].

22

Logical Layers Logically, the kernel is executed on a thread (work-item in OpenCL), which
follows the single instruction multiple thread (SIMT) extension of the SIMD paradigm of
Flynn’s taxonomy [Fly66]. In the SIMT paradigm multiple SIMD operations get executed
in lock-step [MRR12]. Multiple threads are grouped as a block (work-group in OpenCL)
and multiple blocks form a grid (n-d range in OpenCL). Both groupings have to be manually
configured and are exposed to the kernel using a block index (global ID in OpenCL), which
describes the index of a block inside an grid and a thread index (local ID in OpenCL),
which describes the index of a thread within a block. This two-level grouping is crucial
for inter-thread communication, which is implemented using per-block shared memory
(Section 2.3.2) and synchronization. Although the grid has no practical limitations in terms
of dimensionality, the dimensionality of a block is constrained by hardware limitations,
such as the availability of shared memory and hardware registers. This is due to the fact
that all threads within a block are defined to be processed concurrently.

Physical Layers Physically, the bottom layer of a GPU are warps (wavefronts in OpenCL),
which implement the SIMD model. For NVIDIA architectures, each warp holds 32 lanes,
which are directly mapped to threads. Warps are part of a streaming multiprocessor (SM;
compute unit in OpenCL) and blocks are permanently mapped onto an SM due to their
requirement of concurrent processing. Because modern GPUs usually have multiple warp
schedulers, they themselves operate in the MIMD model. The set of individual compute
units define the compute device.

2.3.2. Memory Spaces

Device Memory and L2 Cache Device memory is a physical off-chip dynamic random
access memory (DRAM) that is used to exchange data with the host, other kernels or for the
usage of temporary memory. Memory transfers from the host are implemented using direct
memory access (DMA) of the CPU DRAM via the Peripheral Component Interconnect Express
(PCIe) bus. Similarly to CPU DRAM, the device memory is wrapped by the L2 cache that
caches physical memory addresses. A cache, as illustrated in Fig. 2.6, in general, is a
smaller but faster memory that maps frequently accessed addresses from the underlying
memory given a replacement and write policy. A common example of a replacement policy
is the least recently used (LRU) policy, typically implemented as a stack data structure
that replaces the least recently accessed cache line when the cache becomes full. The
L2 cache is the connecting point to the L1 caches on the chip. It is implemented with a
write-back policy [NVI20], which means that data is initially only written to the cache.
Then, the cache line is marked with a dirty bit, indicating that it must be written back to

23

Line Valid Dirty Tag Data
0 0 0 —
1 1 0 4
2 1 1 0
3 1 0 256

Block Data
0
1
2
...
17
18
19
...

1026
1027

Cache

Memory

Figure 2.6.: Diagram of a direct-mapped cache with a write-back policy and four lines.
The lines indicate the mapping between cache lines l maps and memory
blocks b, computed as l = b/4. The solid lines indicate whether a block is
currently in the cache. Cache line two is currently marked as dirty because
the cache line received a write. The valid bit indicates whether a cache line
contains data, while the tag t represents the most significant bits of the
mapped address, calculated from the block as t = b mod 4.

24

main memory upon eviction. The advantage of the write-back policy is that writes benefit
from the faster cache memory. Additionally, it is possible to use the write-back policy for
the L2 cache, as the L2 cache does not require synchronization with any caches on the
same layer. This eliminates the need to treat dirty cache lines. In contrast to the L1 cache,
the L2 cache is completely opaque to the user. The majority of parameters pertaining
to the caching architecture, with the exception of the cache capacity, are typically kept
secret by device manufacturers. However, some details can be revealed through the use of
fine-grained microbenchmarking [MC17].

L1 Cache In newer NVIDIA architectures, the L1 cache is partially transparent to the
programmer. While there is a region that can be freely addressed from the kernel (see
shared memory below), a further region can be used as a standard cache. The L1 cache is
located on each SM separately, necessitating a write-through policy [NVI20] with write
masks. This ensures that data is directly written to the underlying memory layer to
maintain data consistency. However, the data written to the cache is defined to be not
consistent between SMs [NVI22]. A line in the L1 cache is defined to be 128B for NVIDIA
architectures. The ratio between shared memory and L1 cache can be configured on
recent NVIDIA devices.

Global Memory Global memory represents the most generic logical abstraction of device
memory. A single memory referencing instruction, a memory request, may encompass 1B,
2B, 4B or 8B of aligned virtual memory per thread [NVI22]. This results in 32 requests
in total per warp. These 32 memory regions may be aligned in a sequence or overlap
in the optimal case, although this is not a requirement. In order to minimize physical
memory accesses to device memory, i.e. memory transactions, the memory management
unit automatically coalesces per-instruction addresses into fewer sequential transactions.
The maximum size of a memory transaction depends on the architecture, but is usually
up to 128B. An illustrative example of a fully coalesced memory access is that of threads
accessing their respective 32 bit floating-point values in an aligned fashion, collectively
forming a single memory transaction of 128B.

Local Memory Local memory (private memory in OpenCL) is an abstraction of global
memory and therefore also resides in device memory. Its purpose is to act as further
temporary storage space when the amount of available registers is exhausted or the
temporary memory needs to be addressed dynamically. The only difference is the logical
handling, which requires separate uniform memory regions for each thread. In the context

25

ADD ... LDG ... ADD ... MOV ...
R0:

JMP T0

save state call
instr. fn.

restore
state LDG ... JMP R0

T0:

Trampoline

Program

Figure 2.7.: This diagram illustrates the manner in which the trampoline interacts with
the original program in dynamic binary instrumentation. The program at the
top is a stream of exemplary low-level assembly instructions where the LDG
is the instruction that should be instrumentated, replaced with a jump to label
of the trampoline T0.

of ray tracing (Section 2.1), the dynamically addressed traversal stack, which frequently
exceeds the capacity of registers, is typically stored in the local memory.

Shared Memory The concept of shared memory (local memory in OpenCL) represents an
abstraction of the underlying L1 cache memory. It is employed primarily for the purpose
of facilitating data exchange between threads within a block, which is defined as a unit of
execution that is permanently bound to a single SM.

2.3.3. Binary Instrumentation

The technique of binary instrumentation allows for the alteration of the operational be-
haviour of individual compiled applications. While a principal objective is the profiling of
applications [Luk+05], it can also be employed for the purposes of validation, hardware
analysis and educational or scientific purposes [Red+04]. In general, binary instru-
mentation can be distinguished into two categories. The first category is static binary
instrumentation (SBI) [ZS15; Zha+13], which hooks between the compile- and run-time
of a program. In contrast to that, the following focuses on dynamic binary instrumen-
tation (DBI), which analyses and manipulates code during runtime. Two common DBI
frameworks for CPU binaries are Intel Pin [Luk+05] or DynamoRIO. Recent developments

26

include NVBIT [Vil+19], which brings the technique to GPU architectures. NVBIT uses a
automatically generated trampoline code and replaces the instruction that was selected
during prior code analysis with a jump instruction to said code region. This process is
illustrated in Fig. 2.7. In order to retain original program behavior, the original instruction
is included in the trampoline. Additionally, the trampoline safely calls the instrumentation
function by wrapping the call instruction with procedures that back up and restore the
program state. The instrumentation function is arbitrary user code that has access to the
instruction operands as well as other general-purpose registers of the CUDA architecture.
An illustrative example pertinent to this thesis is a memory tracer that selects all instruc-
tions with memory references in their operands during program analysis and injects a
function that transfers these memory references to host memory for further processing.

2.3.4. GPU Simulation

GPU simulation represents a significant research topic, as it enables the bridging of the
gap between the innovations of hardware manufacturers and open research [Kha+20].
The coarsest level of simulation is the cycle-accurate simulation. This approach is advan-
tageous, as it allows for the modelling of every part of the GPU and the implementation
of performance evaluation directly in the hardware design at arbitrary points. An exam-
ple of a cycle-accurate GPU is the Nyuzi [Bus+21] GPU. It is an open source GPU that
comprises fully synthesizable hardware description language (HDL) code. While it has
basic rasterization and computation support, most advanced hardware techniques are not
comparable to those of modern GPUs [Bus+16]. Its aim is to provide a general-purpose
architecture that can be further specialized to more complex use cases. However, one
disadvantage is that cycle-accurate simulation is very compute intensive. At a higher
level, simulators like Ocelot [KDY10], GPGPU-Sim [Bak+09] and Accel-Sim [Kha+20]
aim to simulate GPU programs at the instruction level on CPU architectures. In the case
of CUDA, the PTX instruction set architecture (ISA) is transformed into an intermediate
assembly (LLVM in Ocelot) that can be further transformed to numerous architectures.
Moreover, these simulators separate the API from the driver by wrapping it with a reimple-
mentation. Simulators such as MCUDA [SSH08] have a comparable fundamental concept
but compile the CUDA code directly into CPU binaries and specify additional concepts
for synchronization. The configuration parameters required for different models, which
in turn depend on industry secrets, vary according to the simulation level. In this con-
text, micro-benchmarking [MC17] represents an important technique for estimating the
aforementioned configuration parameters, including those pertaining to cache parameters.

The memory is a crucial component for GPU performance, given that many applications
are memory-bound, partial simulation of the GPU, i.e. the memory pipeline, may be

27

Time step 0 1 2 3 4
Reference 0 1 1 2 0

Reuse distance ∞ ∞ 0 ∞ 2

Table 2.1.: Exemplary reuse distance calculations given their access time and reference.
The time step 4 illustrates that only unique memory references are taken into
account. The reuse distance at time step 4 (solid border) is calculated by
counting the entries with a dashed border.
Adapted from the work of BUELOW, RIEMANN, GUTHE, and FELLNER [Bue+22a].

a feasible approach. The simulation of the memory pipeline necessitates the actual
list of memory transactions to the memory system. In order to derive the actual list
of these transactions from the list of memory requests, address calculations must be
performed [BGF22]. The list of memory requests can be extracted automatically using
DBI [Ara+20] from actual compiled GPU applications during runtime. While the simulation
of the actual main memory is straightforward, caches must be approximated further using
reuse distances [Nug+14; TYL11; WX16; Ara+19]. An example of computing reuse
distances can be seen in Table 2.1. A technique for approximating and formulating the
behavior LRU cache hit rates pi is the stack distance cache model (SDCM, Eq. (2.28)) of
Agarwal, Hennessy, and Horowitz [AHH89] relying on reuse distances Di and the
cache associativity A and the number of cache blocks B:

pi =
A−1∑︂
a=0

(︃
Di

a

)︃(︃
A

B

)︃a(︃
1− A

B

)︃Di−a

(2.28)

The aforementioned simulation results can then be utilized for the purpose of perfor-
mance visualization, as will be demonstrated in the following section.

2.4. Performance Visualization

Visualization can be divided into two categories: scientific visualization and information
visualization [Nag06]. While physically-based ray tracing (Section 2.1) is a prominent
example of scientific visualization, where natural phenomena are simulated, information
visualization aims to visually prepare information for highlighting interesting phenomena.
Performance visualization therefore covers both [Sch+11]. This section provides an

28

Application
Domain

Hardware
Domain

Communication
Domain

Performance
Visualization

high-
dim.

algor
ihms

scientific
analysis

graph algorithms

Figure 2.8.: The HAC model comprises three domains, each marked with a blue node,
which can be mapped to one another using domain transformations, repre-
sented by arrows. Arrows pointing to the centre represent the information
visualization technique.
Derived from the work of SCHULZ, LEVINE, BREMER, GAMBLIN, and PASCUCCI [Sch+11],
© 2011 IEEE

overview of the fundamentals of information visualization and its relationship to scientific
visualization in the context of performance information.

2.4.1. Information Visualization

Brehmer and Munzner [BM13] introduce a multi-level typology that separates informa-
tion visualization into three parts: the why part, the how part, and the what part. The
purpose of this typology is to characterize visualization tasks using a lexicon of smaller
tasks that aim to help understand complex visualization tasks.
In practice, the why part of a visualization is the first aspect to be considered. This is

because a practitioner must first decide why a visualization task is performed before asking
how it is done and what is required [BM13]. This is in accordance with the typology,
which divides the why part into multiple levels of specificity. The highest level of specificity
is the consume purpose, which describes whether a visualization is consumed in the form
of a presentation, for discovery or simply to let the user enjoy the visualization. In the
next level, users should search within the visualization. The variable of search can be
divided into two categories: if the target is known and if the position in the visualization

29

is known. The former specifies whether a search is performed by looking up the target,
locating the target, by browsing or exploring. In the final level of specificity, users found a
potential target which they either identify or compare against another target or summarize
the contents of a visualization.

The how part describes methods of visualization or interaction, which can be categorized
into two main types: bare visual encoding of the initial information, the manipulation of
the visualization, and introduction in the context of interactive visualization. Finally, the
what part describes inputs and outputs of the visualization, which can be specified in a
freeform textual way within the scheme.

2.4.2. The HAC Model

The HAC model has been described by Schulz, Levine, Bremer, Gamblin, and Pascucci
[Sch+11]. It distinguishes performance data into three domains as seen in Fig. 2.8.
These domains are the application domain, the hardware domain, and the communication
domain. Performance data in the application domain represents the outcome of a physical
model itself implemented by the domain expert. In contrast, performance data in the
hardware domain is measured at the level of computing cores. The communication
domain is measured in network links. Defining and understanding these domains has the
advantage that inter-domain transformations can be built on top of them, allowing for
existing tools to use or combine performance data from other domains. The work of Isaacs,
Giménez, Jusufi, Gamblin, Bhatele, Schulz, Hamann, and Bremer [Isa+14] presents
additional layer abstractions, with the software layer being of particular importance. This
layer can be seen as a layer between the application and hardware layers, capturing
performance information at the level of the source code.

Application Domain The application domain describes the intended behavior of a pro-
gram itself. As an illustrative example, consider a physical simulation that measures
stress on a mechanical object. In this context, ray tracing represents an important tech-
nique for visualization. In this case, the stress itself corresponds to the performance data.
Performance data in the application domain is visualized using scientific visualization.

Hardware Domain The hardware domain describes the behavior at the layer of compute
cores. In the previous example, the physical simulation must be executed on a computing
device, which is a CPU or GPU core and its corresponding memory interface in practice.
This hardware can provide further information, such as the temperature of the compute
core, the number of intrinsic operations, or the cache hit rate. As the actual application

30

is typically of a higher dimension than the number of hardware cores, a dimensionality
reduction is required to map from the application domain to the hardware domain.
However, the opposite direction is less straightforward and requires further information
that allows upsampling and distributing the data back into the application domain. One
potential solution to enable such transformations is to simulate the hardware in order to
retain mappings from the application layer in simulated hardware operations [Bue+22b].

Communication Domain The communication domain describes the behavior at the
layer of a network link. To illustrate, we extend our example to run on an MPI cluster,
which handles multiple computing cores communicating with each other using standard
network links. Each MPI instance or network switch can further measure the amount of
communication between two cores. The problem decomposition is typically performed in
the application code itself, where the transformation can be applied. The communication
domain is of lesser importance in this thesis, as our objective is to measure memory
behavior, which is largely independent of communication in our assumed single-device
setup.

31

3. Papers and Contributions

This chapter summarizes the works and their contributions attached in Chapters 5 and 6.
The works are presented in a the order corresponding to their relationships described in
Section 1.2.

33

3.1. Fine-Grained Memory Profiling of GPGPU Kernels

This section summarizes the paper

M. von Buelow, S. Guthe, and D. W. Fellner
“Fine-Grained Memory Profiling of GPGPU Kernels”

which was published in Computer Graphics Forum 41.7 (2022): Pacific Graphics.

3.1.1. Motivation and Contributions

Standard general-purpose GPU profilers, such as NVIDIA Nsight Compute, typically evaluate
hardware performance counters available at the granularity of a kernel call, displaying
cache hit rates, memory transactions, and other memory-related metrics to the user. With
the support of these metrics, software engineers aim to enhance inefficient parts of their
software programs. This is a standard method for identifying potential bottlenecks in GPU
applications. However, the exact cause of inefficiencies may not be apparent to software
engineers. Finding and optimizing these inefficiencies requires a deep understanding of
both the hardware and the program itself. In many cases, a finer-grained representation
of memory-related profiling metrics would be useful. This representation would record
memory metrics for each memory allocation separately, allowing the user to narrow down
the problem to specific regions of the program where the allocation is used.

This paper introduces profiner, a profiling pipeline that automatically derives fine-grained
memory profiles from compiled GPU applications during runtime, similar to existing
profilers. The profiler extracts a list of memory references from the target application and
simulates the memory flow from the processor through the caches to the DRAM. Realistic
hardware parameters from NVIDIA GPU architectures, extracted using previous micro
benchmarks, are relied upon and modeled in our simulator.

In summary, our contributions are:

• A profiling tool that displays the cache hit rates and coalescing behavior for each
allocation individually.

• A detailed model of recent GPU architectures’ memory, which outperforms state-of-
the-art memory models in terms of accuracy when compared to actually measured
profiling metrics.

34

3.1.2. Methods and Findings

The modular pipeline comprises five essential components. The method uses dynamic
binary instrumentation to extract a list of memory requests. Then, it simulates coalescing
behavior, resulting in a list of memory transactions (Section 2.3.2). Based on this, all L1
caches can be simulated, followed by the global L2 cache annotating each memory access
as a hit or a miss. Finally, the results are accumulated to the desired granularity.
In more detail, the profiler’s foundation is the extraction of memory requests using

the dynamic binary instrumentation tool NVBIT [Vil+19]. The binary instrumentation
tool is instructed to extract all 32 addresses of each thread within a warp, including their
predicates (marking currently inactive threads), the opcode of the memory instruction
used to derive the number of bytes processed by the memory instruction, and processing
hardware identifiers (SM and warp) from the GPU kernel. The profiler streams the data
to the host system for further processing. Accesses to global memory can be used directly
for subsequent steps, except for accesses in the local memory space (Section 2.3.2). The
GPU architecture strides local memory into 4B segments in a manner that each 32 bit
word is referenced by successive threads, making coalescing more efficient [NVI22]. The
striding requires splitting up memory accesses greater than 4B. Moreover, we discovered
that the extracted local memory addresses are offsets within a unique virtual memory
area that does not distinguish between threads. This can give the impression that each
thread is accessing the same memory area from a simplistic viewpoint. To deal with this
fact, our simulator subtracts the local memory base address b from each reference r. Then,
our simulator recalculates the actual memory address using the number of warps per SM
nw, the allocated local memory per thread L, the thread index within a warp it, the warp
index within the SM iw, and the SM index is:

rnew = (is · nw + iw) · 32 · L+ (⌊r/4⌋ · 32 + it) · 4 + (r mod 4) (3.1)
Based on global and transformed local memory requests, we simulated coalescing

as described in Section 2.3.2. Our recording of memory requests was confirmed to be
correct as the number of requests only differed by approximately 0.001% compared to
accurately recorded hardware counters. We assume that this small deviation remains from
synchronization barriers we experienced when issuing internal memory requests, which
NVBIT does not capture. The number of transactions varies by approximately 0.28%. It
is assumed that this small deviation is due to rare side effects in the hardware. As the
deviations are negligible, we conclude that the general idea of our coalescing model is
correct. We will use the generated list of transactions for further cache simulation.
The L1 cache plays a crucial role in cache rate simulations since it directly affects L2

cache rates. Only memory references that miss the L1 cache are forwarded to the L2

35

cache. Therefore, our goal is to utilize realistic models and parameters for our target
architecture. Using parameters from micro-benchmarking [Jia+19], we aim to model a
non-LRU replacement policy. The system consists of L = 32B lines arranged in four sets
S, with a total capacity C of 57 kB in its default configuration (i.e., no shared memory is
used). Using the given values, we can calculate the associativity A (i.e. the number of
cache ways; in this case, 456) of the L1 cache as A = C/(L·S). As sets in the L1 cache evicts
four consecutive cache lines at the same time, we refer to them as sub-lines and define our
cache differently from a standard set-associative cache. We assumed a fully associative
cache with 456 lines of 128B each, which can be loaded partially at a granularity of 32B.
The simulator uses a 4 bit tag per line to indicate the presence of these sub-lines in the
cache. Multiple cache replacement policies were experimented with, and a tree-based
pseudo LRU (PLRU) implementation was ultimately utilized for the L1 cache. This was
chosen due to its likelihood of being used in real hardware and because a PLRU cache
was found to result in the most accurate cache rate predictions for our set of benchmark
applications.
In addition to L1 cache misses, atomic operations and global memory writes have an

immediate impact on the L2 cache (Section 2.3.2). However, the local memory does not
need to be consistent across SMs since it only stores per-thread data. Therefore, it uses a
write-back mechanism between L1 and L2. Our study shows that a standard LRU cache
model correlates best to the actual cache hit rates. Our profiler calculates reuse distances
(Section 2.3.4) for each memory transaction independently for each set. If the reuse
distance is smaller than the associativity, we assume a hit.

In previous steps, the profiler annotated each memory transaction as a hit in either the
L1 or L2 cache. With these cache hit assignments, the profiler can perform fine-grained
allocation-wise accumulations as desired. The profiler categorizes memory accesses based
on their corresponding memory allocation and calculates the conditional probability
p(hit|i) that a memory access is a hit, given the allocation i, using the number of memory
accesses ni within the allocation and the number of hits hi.

p(hit|i) = hi/ni (3.2)

3.1.3. Discussion

Comparison of Coarsely Grained Hit Rates To validate the accuracy of our memory
simulator, we compared cache hit rates from our simulator with those from the PPT
model [Ara+20] and the measured rates from NVIDIA Nsight Compute on a NVIDIA RTX
2080 Ti GPU. We used a variety of applications from a benchmark set [Gra+12; Che+09;
Che+13; Kar+19] that includes kernels of numerical algebra applications, statistical

36

operations, graph and compression algorithms, and machine learning algorithms.
The comparison of our L1 cache simulation and PPT reveals that our implementation

performs well on matrix multiplication kernels, as does PPT. However, our L1 cache
simulation outperforms PPT in many other kernels. It outperforms PPT with a mean
absolute percentage error (MAPE) of 3.73%, compared to PPT’s 9.01% on the benchmark
applications. It is worth noting that PPT failed to execute on one benchmark due to a
segmentation fault, which we did not investigate further. There are cases where our
implementation and PPT lead to inferior L1 hit rate approximations, indicating that our
implementation does not completely reflect actual memory behavior. Comparing absolute
hit rate values reveals that PPT overestimates cache hit rates in many cases, as confirmed
by inspecting their faulty approximation of the L1 cache.
The trend in approximating L2 cache hit rates, for both PPT and our implementation,

indicates an increase in inaccuracy. This is expected as the L2 cache relies on the L1 cache
and therefore accumulates errors. This fact is also evident in the MAPE, which is 15.81%
for our simulator and 20.10% for PPT.
In summary, our cache hit rate approximation technique has significantly improved,

particularly for the L1 cache. Our simulator also significantly improved cache hit rate
approximations for our ray-tracing implementations, which were the initial reason for
implementing it. Our model outperforms PPT because we use a model that is closer to the
actual hardware and employs documented and previously estimated cache parameters to
model them. Additionally, our model does not rely on the SDCM approximation and instead
uses cache implementations to estimate whether a memory reference was a hit. In order
to ensure small derivations in our results, we evaluate each step of our profiler separately,
including memory reference extraction, coalescing, and address transformations.

Fine-Grained Memory Profiles Our fine-grained memory profiler was applied to indi-
vidual configurations of our ray-tracing implementation. These configurations contain a
large set of actively used allocations within one kernel call due to the structural nature
of ray tracing. The general observation from our generated fine-grained profiles is that
they confirm our expectations. Manipulating the scheduling such that each SM follows
its own scanline area enhances L1 caching and decreases L2 cache rates. Changing the
vertex permutation in memory from a spatial sorting to a random one decreases hit rates
on vertex allocations. Additionally, median split decreases cache rates on BVH allocations
compared to more optimal BVH construction strategies. A short demonstration of the
ResNet neural network shows how our tool identifies inefficient indexing on a memory
region. Improving these aspects made the kernel more efficient.

37

3.1.4. Individual Contributions

S. Guthe and D. W. Fellner were general advisors of this work and contributed with
continuous feedback during all phases of the paper writing process. All remaining work
was done by the corresponding and leading author M. von Buelow (leading the overall
research design, management, evaluation and writing process, e.g.).

38

3.2. Profiling and Visualizing GPU Memory Access and Cache
Behavior of Ray Tracers

This section summarizes the paper

M. von Buelow, K. Riemann, S. Guthe, and D. W. Fellner
“Profiling and Visualizing GPU Memory Access and Cache Behavior of Ray
Tracers”

which was published in Eurographics Symposium on Parallel Graphics and Visualization
2022.

Awards This work received the EG PGV 2022 best paper award.

3.2.1. Motivation and Contributions

The run-time performance of ray-tracing algorithms depends mainly on the number of
rays and the size of the scene. To achieve more realistic rendering, either quantity must
increase. Recent developments in the field of GPGPU have enabled efficient execution of
ray-tracing algorithms on specialized graphics cards, making real-time ray tracing possible
in computer games [Par+10].
The primary bottlenecks in ray-tracing applications are memory latency and work

distribution [AL09]. To address the former, GPU vendors have implemented a cache
hierarchy similar to that of CPUs. However, this presents a challenge for programmers who
must consider the cache structure to optimize program efficiency. The cache hierarchies
have become increasingly complex due to SIMD parallelism and separation across different
processors on the GPU. Relying solely on general-purpose profiling values for optimizing
ray-tracing applications can be time consuming and requires deep knowledge of possible
effects caused by individual optimizations.

We have developed a two-part toolset that provides visual insight into cache and memory
behavior. The initial tool is designed to extract a list of memory accesses from the ray-
tracing binary during execution. This is achieved by injecting assembly instructions into
the runtime. This tool also simulates the cache behavior and transforms memory accesses
into per-element accesses of scene elements. The second tool is a web-based dashboard
that displays per-element accesses in a visual format, allowing the user to control the
display of temporal data. The dashboard includes a mesh viewer that shows the original
mesh, with each primitive represented by a color indicating various metrics, such as the
current L1 cache state.

39

In summary, our contributions are:

• A toolset to simulate fine-grained hardware cache rates during run-time and interac-
tively visualizing them onto the original application data (the mesh and BVH) using
a color encoding in a high-performance web-based dashboard.

• A toolset that may be used for profiling and teaching purposes to simultaneously
show how caches behave on GPUs for particular memory permutations, meshes and
bounding volume hierarchies (BVHs), and how they influence which parts of the
mesh actually get referenced.

• A visualization of the write order with respect to the framebuffer, allowing insight
into scheduling and simultaneously indicating the actual application behavior.

3.2.2. Methods and Findings

Memory Trace Extraction The profiler traces memory references and performs a basic
cache simulation. It uses dynamic binary instrumentation (Section 2.3.3) to inject an
instrumentation function before each low-level assembly instruction that includes a mem-
ory reference operand. For each warp, the instrumentation function extracts 32 memory
references r and the SM identifier from the device and streams them to the host system.

To assign references to their corresponding allocation and enable further processing, a
programming interface was introduced for the ray tracer. This interface marks allocations
such as the list of bounding volumes, vertices, faces, and the framebuffer with a represen-
tative name and the size of their elements, denoted as ae. Using the start address as of an
allocation and the size of an element, the following formula calculates the element-wise
offset o within the allocation: o = (r−as)/ae.
Our profiler can then compute reuse distances Di for scene elements based on these

offset values for faces and bounding volumes. To simulate LRU-like behavior in L1 and
L2 caches separately, we calculate an SM-wise reuse distance for the L1 cache and an
SM-independent reuse distance for the L2 cache. Both reuse distances are calculated at the
cache-line granularity, i.e., 128B for L1 reuse distances and 32B for L2 reuse distances.

After calculating all reuse distances, we utilize the stack distance cache model (SDCM),
as presented in Section 2.3.4 to determine the cache-hit probabilities for each cache line
accessed by the element. The SDCM metrics are then averaged [Ara+20] for every cache
line accessed by an element. These values are subsequently provided to the visualization
dashboard.

40

Visualization Dashboard The target audience for our dashboard are software architects
who create and optimize ray-tracing applications. Their goal is to reduce the number
of memory accesses to DRAM by generating more efficient BVHs [Wod+13], improving
memory layout [WMZ22], or changing work distribution [AL09; DGP04]. A visualization
tool should assist developers in identifying potential memory communication bottlenecks
in their ray-tracing applications in a detailed manner. The tool should display profiling
metrics, such as L1 and L2 hit rates, that correspond with metrics from standard hardware
vendor profilers.

The dashboard quantizes memory accesses into frames that visualize a fixed and uni-
formly distributed number of memory references. The default visualization is a single
frame, but the inspector allows the user to select the number of frames q and the currently
active frame f to control the visualization in the mesh viewer using a slider. Memory ref-
erences are distributed equally between frames while retaining their order. This temporal
visualization allows for a detailed analysis of caches, which are highly sensitive to the
temporal axis based on realistic scheduling.
As previously mentioned, we calculate the SDCM for L1 and L2 cache simulation for

each scene element, aggregating multiple accesses to the same scene element within a
single frame. In our setting, our visualization represents the conditional probability that a
scene element produces hits during its intersection, given it has been accessed.
Our dashboard also allows the user to visualize the access rate and order of memory

references, as these values are already implicitly encoded in our memory trace. The order
of access o = ie/Nf is determined by the unique ordering index ie provided by the memory
trace, which is normalized by the total number of memory accesses in a frame (Nf).
Access rates r = Ne/Nf are determined by the number of per-element accesses, denoted as
Ne, in the active frame.

3.2.3. Discussion

The algorithm was evaluated on five meshes: the Asian Dragon, the Sponza Palace, the
Stanford Bunny, and the San Miguel scene. To maintain brevity, we focused solely on single-
hit-point ray tracers, given the vast array of possibilities for ray-tracing implementations in
terms of physical accuracy. However, our visualization scheme generally works on all ray
tracers, as it only depends on memory access patterns and not on specific implementations.

It is observed that the size of triangles affects the hit rate, with coarser sampled triangles
having a better cache rate than smaller ones in the projection. Additionally, the implicit
occlusion culling of BVHs effectively prevents most memory accesses on the back of the
mesh geometry. However, despite their back-facing orientation, some parts of the mesh
still undergo triangle intersection tests. This can occur because the decision on which

41

BVH subtree to process first is based on the distance from the intersection point to the
camera, which may be inefficient for certain mesh geometries. Overall, our L1 and L2
visualizations appear to align with the raw hit rates from the NVIDIA profiler.

Vertex Permutation The tracer employs indexed triangle lists and modifies caching
effects by altering the permutation of vertices in memory in two defined ways. The first
method involves a random shuffling operation, which is expected to have weak cache
performance. The second method involves spatially sorting the vertices, which is expected
to result in more coherent accesses. Our visualizations confirm these expectations, as well
as those of the NVIDIA profiler. Additionally, our visualization highlights the strength of
our profiler compared to standard profilers by allowing exploration of regions of interest
and profiling them. Our visualizations using the sorted memory layout show a diagonal
pattern with lower caching rates, while the randomly shuffled layout does not.

BVH Heuristic Different types of BVHs may have varying effects on caches. We imple-
mented a binary BVH using the SAH and the median-split strategy. Our visualizations
indicate that for the Dragon mesh, the cache performance of faces is roughly equivalent
for the median-split-based implementation. This suggests that in this case, the memory
coherence of face accesses is not impacted by different BVH construction heuristics. How-
ever, when visualizing more complex scenes such as San Miguel, hit rates decrease when
tracing a median-split representation. This is due to an increased number of unnecessary
visits to BVH nodes caused by a higher EPO.

Framebuffer Resolution The visualization demonstrates that increasing the size of the
framebuffer leads to higher cache efficiency on the geometry due to the higher memory
coherence resulting from a denser sampling of the mesh.

Work Distribution Scheduling typically affects cache performance. To demonstrate
this in our visualization, we implemented two different scheduling techniques. One
configuration allows our ray tracer to use a simple global scanline scheduling, while in
a second configuration, it performs scanline scheduling for each SM independently. By
doing this, we expect to enhance the L1 hit rate, as the L1 cache is located directly on the
SM, as confirmed by our visualization and the NVIDIA profiler. Both also demonstrate a
slight decrease in the L2 hit rate. This can be attributed to the decrease in global memory
coherence when scanline scheduling is tied to the SM.

42

Time Series We evaluated changes in the L1 visualization over time. The hit rate of
a given triangle can drastically change during execution, which was one of the initial
motivations for introducing a time-based exploration. The accumulation blurs out such
effects, making possible misses invisible to the user. Additionally, it is evident that accessed
triangles have a higher hit-rate probability in subsequent frames due to the increasing
number of memory accesses. Initial frames only show bounding volume accesses. In
the following frames, the visualizations demonstrate that the size of a bounding volume,
which corresponds to its level, decreases during traversal.

Framebuffer Visualization Visualizations of framebuffer writes reveal an intriguing
outcome. The visualization of the pixel write order highlights the shape through color
variations. The silhouette of the object that emerges can be attributed to the previously
mentioned local increase in BVH intersections. The actual 3D appearance is based on the
fact that faces in slanted regions tend to result in deeper BVH levels to optimize the surface
area of BVH nodes. This phenomenon serves as a prime example of how performance
data can be projected between domains, as described in Section 2.4.2.

3.2.4. Individual Contributions

As corresponding and leading author, I led the overall research question and design,
related work, management, and introduction, as well as discussion of the paper. The
methodology contains two major parts: The profiler, which is the backend that generates
and simulates profiling values to be visualized, and the dashboard, which visualizes this
data in a graphical user interface. I developed the overall concept of the publication to
visualize fine-grained performance profiling values onto meshes and how to extract and
simulate them from GPU programs in detail, while K. Riemann developed the concept of
the dashboard in detail. During the writing process, K. Riemann improved major parts of
the writing style in the paper as part of an internal review process and S. Guthe and D.
W. Fellner supervised the work regarding the submission process.

43

3.3. Reconstructing Bounding Volume Hierarchies from Memory
Traces of Ray Tracers

This section summarizes the paper

M. von Buelow, T. Stensbeck, V. Knauthe, S. Guthe, and D. W. Fellner
“Reconstructing Bounding Volume Hierarchies from Memory Traces of Ray
Tracers”

which was published in Pacific Graphics Short Papers, Posters, and Work-in-Progress
Papers 2022.

3.3.1. Motivation and Contributions

State-of-the-art GPU ray-tracing applications often use proprietary hardware acceleration,
with implementation details frequently hidden from the scientific community. Efficient ray
tracing relies heavily on BVHs that are constructed to optimize performance [AKL13]. An
examination of the runtime behavior of ray tracers can provide insight into the heuristics
employed in the construction of BVHs.
The objective of this work is to retrieve additional information on the construction of

BVHs and reconstruct their underlying data structure. To achieve this goal, we analyze
the memory accesses of a ray tracer. We extract the list of memory accesses from the ray-
tracing application using a dynamic binary instrumentation tool for GPUs and export them
to a memory trace. We define multiple analysis steps that are largely independent from
the actual BVH layout. These steps successively reconstruct the underlying BVH structure,
which can be further refined by accumulating reconstruction results from individual ray-
tracing viewports. Our reconstruction steps first rely on a graph data structure that has
attached weights on its edges. This structure is then refined into a polytree data structure
corresponding to a BVH (Section 2.1.2).

In summary our contributions are:

• A process for reconstructing the BVH from a memory trace.

• The observation that relaxing the constraints on the connections between nodes
from a binary tree to a general directed graph enables a simpler and more robust
reconstruction.

44

3.3.2. Methods and Findings

NVBIT is used to inject an instrumentation function before each memory load instruction.
This function captures the operands representing the loaded addresses and passes them
to the host. The outcome of this procedure is a list of memory accesses, which is known
as a memory trace. This list can be used for subsequent analysis.

A set of four analysis steps ia applied to a graph data structure representing the potential
links between BVH nodes. These analyses annotate the edges of the graph with weights
representing the probability of being an actual edge of the BVH. The analyses can be
run independently, allowing for a modular application design. Their main purpose is to
provide metrics about potential dependencies in memory, which are then used to build the
desired graph. The first analysis step is the linear-access analysis, which checks for each
accessed structure of an allocation whether it was accessed in a linear fashion. An example
for this analysis are leaf nodes as they typically store an array of triangles for contiguous
access. Moreover, the inter-allocation link analysis aims to capture links between two
different allocations. Some allocations simply store indices (implicit or explicit) to another
allocation, such as indexed face lists, making them interdependent. We capture links
by storing the set of subsequently accessed indices in other allocations. The consecutive-
access analysis identifies dependencies within a single allocation by recording successively
accessed indices. This approach enables the capture of hierarchical dependencies for
BVH trees that are stored in the same allocation. However, false links may occur due to
irregular traversal of child nodes resulting from stack-based traversal. Thus, the stack
analysis is specialized for such stack-based BVH traversals. Its aim is to refine the quality
of the reconstructed BVH by keeping track of push and pop operations on the ray-tracing
stack. Since stack operations are usually the only source of local memory usage, our
reconstruction algorithm tracks local memory load and save operations.
To improve the accuracy of the reconstruction result, our BVH reconstruction pipeline

can merge multiple independent partial reconstruction results. Finally, the graph data
structure is refined into a polytree by defining a root and recursively selecting the two
children with the highest weights.

3.3.3. Discussion

For BVH reconstructions based on a single ray-tracing viewport, the reconstruction rate
is consistently below 50%. This is due to the rendered meshes, which display fully
connected objects with the backside hidden from the camera. BVHs are designed to
prevent access to invisible triangles, which are typically out of view, on the backside,
or occluded. Our reconstruction approach relies on memory accesses, which results in

45

certain mesh components remaining invisible. The Bunny model has a BVH reconstruction
rate of 44% to 49%, while Dragon and Happy Budda have slightly lower rates. The Living
Room scene has additional mesh components that are outside the view frustum, resulting
in a lower reconstruction rate. Altering the resolution of the rendered viewport affects
the reconstruction rate in an S-curve until it reaches saturation. This phenomenon can
be explained by triangles that are not visible to any rays due to undersampling of the
mesh [Sha98].
Our reconstruction approach is able to achieve 100% accuracy with a few uniformly

chosen cameras covering the entire Bunny model. However, more complex models, such as
the Dragon, only reach 85.5% accuracy with simple camera positions, and this increases to
98% when carefully selecting cameras that cover all parts of the mesh. This demonstrates
that reconstructing the entire BVH may be impossible in certain cases, as the mesh may
be modeled in a way that individual triangles cannot be seen by any natural camera
configuration. However, we contend that BVHs with reconstruction rates achieved by our
approach provide a solid foundation for further analysis of the underlying BVH heuristics.

3.3.4. Individual Contributions

As corresponding and leading author, M. von Buelow led the overall research design,
management and writing process of the paper. All authors contributed the literature
review together where M. von Buelow took most of the work. The research design and
choice of the theoretical model was done by T. Stensbeck and M. von Buelow together.
T. Stensbeck planned and derived the concept together with M. von Buelow, while
T. Stensbeck implemented the prototype. The results and discussion were primarily
written by T. Stensbeck. The central implications of this work were mainly derived by T.
Stensbeck. Volker Knauthe wrote parts of the introduction and abstract. S. Guthe
and D. W. Fellner were general advisors of this work and contributed with continuous
feedback during all phases of the paper writing process.dissertation.

46

3.4. In-Situ Profiling Feedback for GPGPU Code

This section summarizes the poster

A. Pauli, M. von Buelow, and D. Ströter
In-Situ Profiling Feedback for GPGPU Code

which is currently unpublished.

3.4.1. Motivation and Contributions

Harward, Irwin, and Churcher [HIC10] implemented the idea of visualizing profiling
metrics in source code using simple techniques that display the metrics directly in the
code. They also added a secondary visualization layer at the beginning of each line to
display an additional metric. Beck, Moseler, Diehl, and Rey [Bec+13] emphasized
the psychological perspective of providing in-situ profiling metrics. The study evaluates
how profiling data is cognitively processed and concludes that in-situ visualizations
physically integrate different representations. This integration mitigates the split-attention
effect and reduces extraneous cognitive load, resulting in enhanced cognitive resources
for information processing and improved user information processing. The toolset of
Cito, Leitner, Bosshard, Knecht, Mazlami, and Gall [Cit+18] offers advanced
techniques for interactive visualization in an integrated development environment. While
existing works provide a solid theoretical and practical foundation, they are tied to specific
programming languages like Java or to CPU hardware. This poster presents an approach
capable of inspecting arbitrary source code that can be executed on an NVIDIA GPU and
can be easily migrated to other GPU vendors.
In summary, our contribution is an in-situ code profiling implementation focused on

GPU hardware that maps memory profiling metrics to the domain of the source code by
estimating per-line metrics of the program.

3.4.2. Methods and Findings

The in-situ profiler consists of two main components: the frontend and the backend. The
backend relies on a framework [BGF22] that emulates certain parts of the memory of
an NVIDIA GPU based on a list of memory requests obtained through dynamic binary
instrumentation. The memory simulation also includes the simulation of caching behavior,
allowing for the accumulation of per-line cache hit rates. This is in contrast to standard
general-purpose profilers, which can only account for such metrics at the granularity of a
kernel call.

47

Annotated cache hit rates are utilized in the integrated development environment (IDE)
that defines the frontend of our profiler. Specifically, we chose Visual Studio Code as the
IDE due to its popularity in the community and the ability to customize parts of the code
editor, which is necessary for our visualization.

The user’s workflow is defined by developing a program until a certain point is reached,
at which point the program should be analyzed using our profiler. The user compiles
the GPGPU program in debug mode to allow our profiler to extract source code line
information. Then, the user can right-click on the signature of a kernel in the source code
editor to start the profiling procedure for that specific kernel. After the profiling process
is complete, the resulting cache hit rates are highlighted in the source code using boxes
around the line, with a color coding representing the hit rate value. Hovering over the
box provides more detailed information.
This representation allows the user to identify inefficient lines in the source code and

optimize them. The profiling workflow can be repeated an arbitrary number of times.

3.4.3. Discussion

Our in-situ profiler was evaluated on a program that included lines expected to be inefficient
in terms of cache hit rates. To achieve this, we chose a problem size large enough to
produce a reasonable number of incoherent memory accesses. The profiling system
confirms this behavior by marking those lines in red, visually corresponding to expected
values. Our work represents an initial approach to bringing the idea of in-situ profiling
into the domain of GPUs. However, in the future, a larger evaluation and further study of
the interest group must be conducted.

3.4.4. Individual Contributions

The poster is based on the bachelor’s thesis titled “In Situ Code Profiling IDE Feedback for
CUDA Applications” by A. Pauli. I was the primary supervisor for the thesis. Although
A. Pauli had the initial idea for the project, the final research question was developed
iteratively with D. Ströter and me. Furthermore, I contributed to the poster’s content,
while D. Ströter reviewed it for an upcoming conference proceeding submission.

48

3.5. A Visual Profiling System for Direct Volume Rendering

This section summarizes the paper

M. von Buelow, D. Ströter, A. Rak, and D. W. Fellner
“A Visual Profiling System for Direct Volume Rendering”

which was published in Eurographics 2024 - Short Papers 2024.

3.5.1. Motivation and Contributions

Direct volume rendering (DVR) is used to explore simulation results of virtual prototyping,
typically implemented using ray marching. Over the past few decades, many GPU-based
DVR implementations have been developed to optimize various aspects for improved
run-time performance. However, only a few works have focused on profiling tools for
individual DVR implementations. In this paper, we present a specialized profiling tool for
DVR implementations. The tool visualizes extracted profiling values in the domain of the
finally rendered image, making it possible to obtain a spatial component of profiled metrics.
The basis of the tool is a memory simulator that uses dynamic binary instrumentation, as
described in Section 2.3.3.
In summary, our contributions are:

• An extensible visual profiling system that visualizes cache hit rates and code branch-
ing in the spatial domain of the framebuffer from arbitrary compiled GPU DVR
applications.

• An analysis of several configurations of a state-of-the-art DVR implementation using
our proposed profiler.

3.5.2. Methods and Findings

Our pipeline is based on a toolkit [BGF22] that includes a simulator of a typical memory
pipeline of an NVIDIA GPU. The simulator is necessary because cache hit rates are only
available on a per-kernel basis using standard profilers.

Metrics To visualize the cache hit rate, we use the list of memory accesses extracted
from the memory simulation pipeline, which has already undergone coalescing simulation
and cache hit rate estimation. We then accumulate the cache hit rates based on the
grid coordinates to transform the flat list of annotations into the spatial domain of the

49

output image. To provide the user with a more comprehensive understanding of the
program’s behavior, we perform this aggregation for each memory allocation separately.
Our toolkit automatically identifies and separates individual memory allocations of the
profiled program and assigns each set of memory accesses a(x,y,i) a continuous allocation
identifier i. This allows us to use a simple array of two-dimensional hit rate counters to
handle the desired accumulation. Note, that we use the operator ⌈·⌉ to denote the number
of hits in a set of memory transactions. The hit rate is calculated for each pixel individually
as follows:

p(x,y,i)(hit) =
⌈a(x,y,i)⌉
|a(x,y,i)|

(3.3)

The methodology employed for accounting for branching in the image domain is
analogous to that employed for cache hit rate accounting. On GPUs, branching is executed
by sequentially executing each code path with each thread in a warp, consisting of
w = 32 threads, being inactive in the current code path. To measure branching, a counter
corresponding to the specific pixel is incremented. The number of active threads within a
warp i is denoted as ni, and the set of warp-wise memory requests per pixel is denoted as
r(x,y). Moreover, the metric for the number of memory requests per pixel N(x,y) and the
branching rate b(x,y) ∈ [0, 1] are given by:

N(x,y) =
∑︂

i∈r(x,y)

ni (3.4)

b(x,y) =
N(x,y)

w · |r(x,y)|
(3.5)

These extracted values are transformed into color values using standard color mapping.

Visualization System Our visualization system aims to optimize the run-time perfor-
mance of ray-tracing applications for experienced software engineers in the computer
graphics and ray-tracing domain. Standard profilers only provide coarse metrics at the
granularity of a kernel call. However, our visual profiler provides further insight into
performance data mapped to the spatial domain of the framebuffer, which can potentially
help identify inefficiencies in spatial data structures.

3.5.3. Discussion

In this section, we present our profiling tools utilizing the SimJeb122 and SimJEB514
models. We use compression rates that are controlled by the DVR-internal parameters
α ∈ {0, 1, 2} and sampling rates of S ∈ {2, 1, 0.5}.

50

Our visualizations clearly depict the original structure of the model, despite only visu-
alizing performance values, which is a common phenomenon in performance visualiza-
tion [Sch+11]. Additionally, we observed a general trend of good caching efficiency in
vertices, which can be attributed to coherent memory accesses resulting from the relatively
high amount of data loaded per vertex.
The visualizations of the SimJeb122 model indicate that branching primarily occurs

within the silhouette boundary of the model. This is expected as threads diverge in
these regions, resulting in either empty space or the model. The individual compression
and sampling rates do not significantly affect branching visualizations. However, as α
values increase and sampling rates decrease, the number of global accesses also increases.
The internal DVR implementation’s children offsets have slightly higher cache hit rates
when the sampling rate is increased due to oversampling behavior, where individual rays
intersect the same leaf nodes more frequently. The primitive index allocation used in the
DVR implementation shows varying cache hit rates depending on the scalar data and
model structure. At the positions of holes in the rendered model, we observe lower scalar
values, resulting in a higher local sampling point density and better cache hit rates.

The visualizations of the SimJEB514 model have similar effects, except for a vertical
line that becomes visible on the right side of the framebuffer. This line correlates with
a higher local mesh resolution in the corresponding region, leading to a higher caching
rate of the primitive indices in these regions. Increasing the compression rate α and the
sampling rate positively influences the cache on thin model regions.

3.5.4. Individual Contributions

The project combines profiling, based on M. von Buelow’s work, and rendering, based
on D. Ströter’s work. To achieve this, M. von Buelow’s toolkit was extended, and D.
Ströter’s DVR was used for evaluation. M. von Buelow, as the corresponding and lead
author, led the research question, paper design, and management. M. von Buelow wrote
Section 3, parts of the introduction, related work, abstract, and conclusion. The evaluation
was conducted jointly by M. von Buelow and D. Ströter. D. Ströter wrote the results
section and its equivalent in the introduction, related work, abstract, and conclusion. D.
Ströter implemented the DVR application for profiling. D. Ströter added important
functionalities to the DVR application to distinguish between allocations. D. W. Fellner
supervised the paper with respect to the submission process.

51

3.6. GPU Ray Tracing of Triangular Grid Primitives

This section summarizes the paper

M. von Buelow
GPU Ray Tracing of Triangular Grid Primitives

which is currently unpublished. However, parts of the paper are published in Inter-
national Conference on Artificial Reality and Telexistence and Eurographics Symposium on
Virtual Environments Posters and Demos 2023 as:

M. von Buelow, A. Kuijper, and D. W. Fellner
“A GPU Ray Tracing Implementation for Triangular Grid Primitives”

3.6.1. Motivation and Contributions

Ray tracing is a rendering technique that transforms scene descriptions, such as triangle
meshes or neural radiance fields, into images. It has practical applications in computer-
aided design, virtual reality, games, and the movie industry. Ray tracing has become
increasingly popular in the real-time domain, replacing classical rasterization due to its
superior capabilities in physically correct global illumination approximation [PJH17]. In
addition, it has been embedded in specialized GPU hardware in recent years [Par+10].
Although high quality scenes can currently be rendered in real time, memory reduction
advancements can be utilized to increase the density of a mesh and compensate for more
detail in the output image.

Structured primitives, like triangular grid primitives, can be used in areas where static
geometry can be assumed within a coarse domain, such as subdivision surface representa-
tions or discretized displacement maps. The data can be derived from either measurements
or previous simplification steps, such as in micro mesh rendering. Our focus is on ren-
dering these structures using ray tracing, so we will use traditional subdivision surfaces
or displacement maps as input data. However, conversion from micro meshes will be
straightforward. Although there are recent works that implement these primitives [BP23;
MMT23; KSW21], none of them focus on a pure software implementation that uses the
GPU as a ray-tracing device. The downside of these implementations is that they require
newer hardware, making the idea less accessible to older or less specialized devices such
as smartphones or self-contained virtual environment devices.

This paper presents a data structure optimized for ray tracing triangular grid primitives
on the GPU. The main idea is to reduce the memory footprint of connectivity data by
exploiting the internal structure of the grid. This is accomplished by differentiating

52

between interior and boundary vertices of a grid primitive and referencing them using
a two-level static indexed triangle list, which ensures that no vertex is stored more
than once. This basic structure is accelerated by a secondary level BVH using bounding
spheres built around the geometry after subdivision recursion. This BVH is stored semi-
implicitly in memory, so that only few additional memory is required and its construction
is computationally negligible. Our data structure is very easy to implement because it
exploits the structure of the subdivision recursion tree.
In summary, our contributions are:

• A joint geometry and BVH data structure for triangular grid primitives targeting
software GPU ray tracers that achieves a memory footprint of 6.3B per triangle for
four-level subdivisions.

• Increased availability due to a simple design that is easy to implement on arbitrary
GPU architectures.

3.6.2. Methods and Findings

The primary concept of our lower-level acceleration structure is to utilize semi-implicitly
derived spheres from triangles as enclosing volumes and align the BVH with the recursive
subdivision aspect. These spheres comprise their centers, which we calculate strictly as the
centroid of the triangle, and the radius is chosen such that all triangles from recursively
traversed children tightly fit within the sphere. All radii are stored in memory using a
breadth-first search (BFS) traversal order. This ensures that equal levels of detail are
located within the same region of memory. Additionally, since all subtrees have the same
subdivision depth, the BVH is a complete tree, making implicit indexing trivial.

The geometry is based on an indexed triangle list with modifications to improve run-time
performance on GPUs. Each grid has the same connectivity, allowing for the storage of
vertex indices for each triangle in the GPU’s constant memory. This results in fast access
times, almost as fast as registers. To prevent encoding vertices of grid boundaries and
corners multiple times, we have extended the simple scheme by introducing a secondary
indexing layer. This layer translates from preliminary indices to final indices. Preliminary
indices are referenced in the constant memory indexed triangle list and translated to
final indices in the corresponding vertex buffer at runtime. The corner vertices of the
grid have the first three preliminary indices, followed by all three boundaries. Boundaries
and corners require additional base pointers, which are explicitly stored in the grid data
structure. To reference two adjacent half-edges only once, negative pointers are allowed,
enabling the adjacent triangle to index vertices in opposite directions with the same

53

preliminary indices. The number of inner vertices is always identical between grids, and
thus can be fully implicitly addressed since they are never shared with another grid.

The structure is traversed using the while-while approach, which is implemented differ-
ently for the two-level BVH. The first inner while loop traverses the top-level hierarchy,
while the second traverses the bottom-level hierarchy and its leaves, instead of distinguish-
ing between inner and leaf nodes. Traversal of the bottom-level hierarchy starts by loading
the tuple of the grid, which includes the corner and boundary pointers, from memory. The
traversal implementation computes the bounding spheres of the six preliminary vertex
indices for the first subdivision level, which consist of four triangles, fetched from constant
memory and translates them into the final index. This process determines whether to
continue traversing a child. The algorithm works by creating intersection intervals for each
intersection, which are then used to push sorted intersected spheres onto the traversal
stack based on the side of the interval that represents the closer hit point. Traversal
continues until the maximum traversal depth is reached, at which point standard triangle
intersection tests are performed instead of sphere intersections. To keep track of the
current node, the traversal state requires only one variable in addition to the stack and
the current interval. The calculation of child node offsets can be done implicitly due to
the complete BFS layout.
Our proposed data structure enables the treatment of all inner nodes as leaf nodes by

performing triangle intersection tests directly on the intermediate subdivision. This allows
for a basic level of detail functionality that can be easily implemented by reducing the
maximum hierarchy depth during traversal.

3.6.3. Discussion

Memory Footprint The memory footprint has been divided into four groups: connectivity,
which consists of vertex indices and our grid data structure; geometry, which consists of
vertices; BVH, which consists of the tree data structure; and bounding boxes and bounding
spheres. Our data structure significantly reduces the storage overhead of the connectivity.
This fact supports the use of grid data structures to eliminate unnecessary connectivity
information by assuming static connectivity within a grid. Our implementation also demon-
strates that boundary vertices occupy approximately one-third of the space of the entire
geometry, emphasizing the importance of not redundantly storing them. However, the
memory usage of the geometry remains unchanged, confirming that our implementation
has not duplicated any vertices at grid boundaries. The reduced memory consumption for
the bounding volume hierarchy (BVH), including its bounding volumes, results from the
implicit representation of the bottom-level BVH and its significantly reduced geometric
information.

54

When analyzing the trend of memory usage as BVH levels increase, it becomes clear
that higher BVH levels require more memory for storage. Our representation is generally
more memory-efficient, except for the case of one-level subdivision with full BVH depth.
This is due to the large memory footprint of our primitive compared to a standard indexed
triangle list or the four corresponding triangles resulting from the subdivision.

Run-Time Performance The triangular grid data structure and reference implementa-
tion are both implemented using the CUDA runtime API. When examining the run-time
performance of each level of subdivision, we observe a speedup of 0% to 28% for an
one-level subdivision. For a two-level subdivision, we see speedups ranging from 10% to
39% impact. The trend continues for three levels with a 16% to 68% performance impact
and for four levels with a 55% to 85% performance impact. The reason for this behavior
is that our semi-implicitly constructed bottom-level BVH has increased the EPO [AKL13],
resulting in more BVH nodes being traversed unnecessarily during rendering. Our results
indicate that meshes with a higher number of visible triangles in the viewport tend to
produce more computational overhead, which was expected since more BVH nodes need
to be intersected. It can be observed that the Head and Armadillo meshes exhibit the
highest potential among the bottom-level BVH. This can be attributed to their lower mesh
complexity, resulting in a lower number of self-intersecting bounding volumes.

3.6.4. Individual Contributions (Poster Paper)

A. Kuijper and D. W. Fellner supervised the work on the submission process. All
other work (research question and design, related work, management, introduction and
discussion, etc.) was done by M. von Buelow.

3.6.5. Individual Contributions (Unshortened Version)

This work was completed solely by the author and does not have any co-authors.

55

3.7. Compression of Non-Manifold Polygonal Meshes Revisited

This section summarizes the paper

M. von Buelow, S. Guthe, and M. Goesele
“Compression of Non-Manifold Polygonal Meshes Revisited”

which was published in Vision, Modeling & Visualization 2017.

3.7.1. Motivation and Contributions

Triangle and polygonal meshes are widely used and have numerous applications. Modern
meshes often consist of millions or even billions of polygons, requiring efficient storage
methods. To address this, various compression techniques and standards have been
proposed. Initially, meshes were stored in plain ASCII or binary format and compressed
using generic methods such as GZip. While this approach reduces storage requirements, it
does not take advantage of redundancies in the underlying mesh, resulting in sub-optimal
compression rates.

Compression approaches can be classified as either progressive or single rate. Progressive
approaches allow for different levels of detail and instant visualization of coarser levels
while loading the remainder of the data. However, multi-rate approaches tend to offer
lower compression rates than single-rate approaches. Several single-rate standards have
been proposed over time, such as OpenCTM, WebGL Loader, Open3DGC, and Google Draco.
However, these standards impose severe restrictions on the type of meshes (i.e., only
triangle meshes) or the types of attributes they support.
This paper proposes a new mesh compression scheme based on the cut-border ma-

chine [GS98; Gum99] that enables the compression of generic, manifold, and non-manifold
polygonal meshes.

More specifically, our contributions are:

• A general and efficient single-rate connectivity compression scheme for polygon
meshes of arbitrary topology.

• A compression scheme for different types and number of attributes attached to
vertices, faces, or corners.

• Compression rates that are on par or better than the state-of-the-art in current
approaches for triangle or polygonal mesh compression even for meshes supported
by other approaches.

56

3.7.2. Methods and Findings

Our approach involves splitting the input mesh into connectivity and attribute data and
encoding both parts separately. The connectivity information is used to set up a data
structure for querying adjacency information, which is then used to encode the connectivity
using our extended cut-border machine. The compression of attributes, on the other hand,
require the connectivity data to define an ordering and prediction.
While the original cut-border mashine [GS98] is capable of compressing a set a fully

connected mesh components, it is not possible to encode ill-formed meshes that contain
non-manifold parts. The impoved one can handle a subset of non-manifold cases, however,
it still not allows for encoding arbitrary topologies. We thus propose a generalized
compression scheme that works for arbitrary polygonal meshes. In the event of a failure of
the cut-border machine, the vertex is identified as already encoded, yet it cannot be located
on any cut-border. On two-manifold meshes this never happen, as the cut-border mashine
processes each edge exactly twice: for creation and for deletion given the cut-border
operations. We solve this problem by identifing this case programmatically and handle it
as a new vertex operation splitting the mesh up into sub-compontents implicitly. Instead
of encoding attribute data for the gate-adjacent vertex redundantly, we encode the global
vertex index recovering the connectivity information similar to a indexed triangle list
(Section 2.2.2).

In the improved cut-border machine [Gum99], the author notes that the compression
can be improved by traversing the mesh using a depth-first search. This keeps the start
vertex of the gate fixed as long as possible and a traversal around the triangle fan of this
vertex happens as long as new vertex operations occur. When the last triangle of the
triangle fan is about to be encoded, a connect forward operation closes the triangle fan and
finally changes the start vertex of the gate to traverse a new triangle fan. Since polygons
can always be split up into such an open triangle fan, we can exploit the traversal order to
continuously encode a triangulation of the polygon. To recover the original polygon, we
simply have to encode the number of additional vertices that belong to this polygon.

Whenever a vector of floating point values representing a certain attribute is encountered
for the first time, it must be encoded in the compressed stream. If some loss of accuracy
is acceptable, the floating point numbers can be transformed into fixed point numbers
using quantization. To minimize the number of bits required for encoding attributes, only
differences to a predicted attribute [Mag+15], that are required to be similar to each
other, are encoded. We model the average of all available parallelograms [TG98] spanned
by the triangles on the triangle fan of the adjacent vertex to predict a vertex. Faces and
corners use their neighbors for prediction. To avoid loss of accuracy when computing
differences in floating point arithmetic, we transform to a signed integer representation

57

that maintains the relative ordering of numbers. Floating point numbers are stored (from
msb to lsb) with a sign bit, followed by the exponent and mantissa. This creates the correct
ordering for positive floating point numbers [LI06]. For negative floating-point numbers,
the correct ordering can be obtained by simply inverting the 31 least significant bits.

3.7.3. Discussion

To evaluate our compression toolkit, we used a set of meshes that includes non-manifold
and two-manifold meshes, as well as triangle and arbitrary polygonal meshes. The meshes
we used were Lucy, Bunny, Power Plant, Beethoven, Galleon, and Kobe.

When comparing the compression ratio of our lossless compression scheme to that of
Google Draco, OpenCTM, and GZip compression of the original file, it is evident that our
approach consistently outperforms GZip compression. Our approach outperforms all other
compression schemes for both the Lucy and Bunny meshes. However, OpenCTM performs
best on the very regular Power Plant model, as well as on the Beethoven, Galleon, and
Triceratops meshes. The likely reason for this difference is the use of dictionary-based
compression in comparison to our approach and Google Draco’s use of entropy coding.
Our compression speed is faster than GZip, except for very small meshes, and on average
requires about the same amount of time as OpenCTM. Furthermore, our approach is the
only one, besides GZip, that can encode polygonal meshes without converting them to
triangle meshes. Our approach outperforms all other approaches in terms of compression
ratio for the triangular meshes, except for the Power Plant. For the polygonal meshes,
our approach produces better compression rates than the only other applicable approach,
GZip.

When comparing lossy compression approaches, Google Draco always produces the
smallest output, with our approach in second place for the Lucy and Bunny models. The
difference in compression performance is due to the attribute prediction scheme. Our
approach stores attributes within the connectivity compression symbol stream, while
Google Draco stores them after encoding connectivity. This allows multiple existing
triangles to predict the position of encoded vertices, resulting in fewer bits needed to
store differences from predicted values. To implement the same prediction stream, it
is necessary to modify the compression scheme to encode all attributes after the entire
connectivity has been encoded. However, our approach is the only one that can encode
polygonal meshes without converting them to triangle meshes, making it the best choice
in terms of compression ratio for these meshes.

In the proposed compression scheme, a triangular mesh requires 1 bit to 3 bit per vertex,
while polygonal meshes require an increase of about 2 bit per vertex, when analyzing the
allocation of bits within the bitstream for both connectivity and attributes. The attribute

58

compression scheme achieves between 10 bit to 24 bit per vertex or corner during lossless
compression of three 32 bit floating-point values. When quantizing attributes to 14 bit for
position and 10 bit for other attributes, the compression scheme achieves between 3 bit to
11 bit per vertex or corner. This corresponds to a compression ratio of 3:1 to 10:1 on top
of the quantization if it is enabled.

3.7.4. Individual Contributions

As corresponding and leading author, I led the overall research question and design, related
work, management, and introduction and discussion of the paper. The basis of the work is
derived from M. von Buelow’s bachelor thesis “Connectivity and Attribute Compression of
Triangle Meshes” from March 2017. My additional contributions are the extension of the
lossless compression scheme to polygonal meshes, techniques for encoding additional types
of attributes (face and corner attributes), and improved predictions for vertex attributes. S.
Guthe contributed the initial design of the algorithm for the connectivity compression and
attribute prediction as well as writing or editing of large parts of the paper. M. Goesele
supervised the work regarding the submission process.

59

4. Discussion

4.1. Summary of Contributions

Ray tracing is an important rendering approach that typically projects 3D representations of
a scene onto a 2D display. Improvements in ray tracing can be made through more efficient
memory layouts, making advanced profiling techniques necessary to make implementation
more accessible. This thesis presented a new method for precisely simulating the GPU
memory pipeline and exporting detailed memory profiles for performance visualization in
specific domains. Additionally, it provides traditional textual memory profiling metrics
that can be displayed in finer granularity than usual. It also presented a compressed ray
tracing implementation that optimizes memory traffic by making assumptions about the
topological properties of the mesh being rendered. The findings can be used to evaluate
and optimize a wide range of ray-tracing applications in a user-friendly manner.
In detail, a memory model of recent GPU architectures that is more accurate than

state-of-the-art memory simulation pipelines was developed. This model can be used to
display profiling data such as cache hit rates and memory access coalescing behavior. The
memory simulator can simulate the behavior of arbitrary compiled GPU applications by
extracting the list of accessed memory using dynamic binary instrumentation techniques.
It then simulates parts of the memory pipeline and projects profiling data onto the original
scene using color mapping, which corresponds to actual measured memory behavior.
The visualization system can spatially and temporally subdivide performance metrics,
enabling fine-grained analysis across multiple domains. Moreover, the visualization of
write operations to the framebuffer provides valuable insights into GPU scheduling and
confirmed fundamental aspects of performance visualization. This toolset for visualization
can be utilized for profiling and educational purposes, demonstrating how caches function
and supporting their efficient utilization. In order to enhance the usability of the profiler,
initial steps were taken towards analyzing the internally used BVH structures. This was
achieved by utilizing BVH memory access patterns extracted through dynamic binary in-
strumentation that were accumulated on a graph data structure. This thesis also presented
visual profiling techniques that are framebuffer oriented for the use case of direct volume
rendering. Additionally, they incorporated the branching behavior of GPU implementations

61

and analyzed their behavior using the profiling toolset. The concept of projecting profiling
metrics into other domains was further developed by outlining a method for projecting
profiling data back to its initial point of origin: the source code. Based on knowledges
in GPU memory modelling, this thesis presented a ray-tracing implementation that uses
a joint compressed geometry and BVH representation using triangular grid primitives
achieving a storage efficiency of 6.3B per triangle, which was previously only possible by
proprietary hardware implementations. The approach can be implemented on any GPU
architecture suffering from such technologies due to its simple design, making the idea of
ray tracing on triangular grid primitives more accessible. Additionally, a single-rate mesh
compression technique that can process arbitrary mesh topologies has been developed. Its
generality enables the encoding of a wide range of attributes and structures, making it
more efficient than other compression techniques.

4.2. Limitations

Although profiling metrics can display fine-grained information in individual domains,
they are still just indicators and may not reveal the actual inefficiencies. This is because the
model may be inaccurate in specialized situations or the aggregations may be too coarse
for a specific scenario. General-purpose profilers also suffer from this problem, as they only
display metrics per kernel. Moreover, the implementation of ray tracing on grid structures
is limited in performance, which is a trade-off for more efficient storage. However, this
approach allows for larger and more detailed scene geometry. Finally, the web-based visual
profiling system has limited memory to represent profiling metrics on meshes. Further
improvements or migration to other platforms could address this limitation.

4.3. Future Work

In the future, there are plans to implement detailed visual profiling metrics using the
profiling pipeline for the triangular grid ray-tracing approach. Although the presented
memory model is more accurate than state-of-the-art models, its error values on L2
cache hit rate approximations suggest that there is still room for improvement. Moreover,
the ray tracing implementation has high potential for lossy compression techniques, as
it introduces additional spatial dependencies that can be used to predict parts of the
geometry. It is possible that the level of detail functionality could compensate for run-time
performance. The evaluation of further DVR implementations is desired for the profiling
tool on direct volume rendering.

62

Bibliography

[AHH89] A. Agarwal, J. Hennessy, and M. Horowitz. “An analytical cache model”.
In: ACM Transactions on Computer Systems 7.2 (May 1989), pp. 184–215.
doi: 10.1145/63404.63407 28.

[AKL13] T. Aila, T. Karras, and S. Laine. “On quality metrics of bounding volume
hierarchies”. In: Proceedings of the 5th High-Performance Graphics Conference.
ACM, July 2013. doi: 10.1145/2492045.2492056 15, 16, 44, 55.

[AL09] T. Aila and S. Laine. “Understanding the efficiency of ray traversal on GPUs”.
In: Proceedings of the Conference on High Performance Graphics 2009. ACM,
Aug. 2009. doi: 10.1145/1572769.1572792 39, 41.

[App68] A. Appel. “Some techniques for shading machine renderings of solids”.
In: Proceedings of the April 30–May 2, 1968, spring joint computer confer-
ence on - AFIPS ’68 (Spring). ACM Press, 1968. doi: 10.1145/1468075.
1468082 9.

[Ara+19] Y. Arafa, G. Chennupati, A. Barai, A.-H. A. Badawy, N. Santhi, and S.
Eidenbenz. “GPUs Cache Performance Estimation using Reuse Distance
Analysis”. In: 2019 IEEE 38th International Performance Computing and
Communications Conference (IPCCC). IEEE, Oct. 2019, pp. 1–8. doi: 10.
1109/ipccc47392.2019.8958760 28.

[Ara+20] Y. Arafa, A.-H. Badawy, G. Chennupati, A. Barai, N. Santhi, and S. Ei-
denbenz. “Fast, accurate, and scalable memory modeling of GPGPUs using
reuse profiles”. In: Proceedings of the 34th ACM International Conference on
Supercomputing. ACM, June 2020. doi: 10.1145/3392717.3392761 28,
36, 40.

[Bak+09] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt. “Ana-
lyzing CUDA workloads using a detailed GPU simulator”. In: 2009 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software. IEEE,
Apr. 2009, pp. 163–174. doi: 10.1109/ispass.2009.4919648 27.

63

https://doi.org/10.1145/63404.63407
https://doi.org/10.1145/2492045.2492056
https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1145/1468075.1468082
https://doi.org/10.1145/1468075.1468082
https://doi.org/10.1109/ipccc47392.2019.8958760
https://doi.org/10.1109/ipccc47392.2019.8958760
https://doi.org/10.1145/3392717.3392761
https://doi.org/10.1109/ispass.2009.4919648

[Bec+13] F. Beck, O. Moseler, S. Diehl, and G. D. Rey. “In situ understanding of
performance bottlenecks through visually augmented code”. In: 2013 21st
International Conference on Program Comprehension (ICPC). IEEE, May 2013.
doi: 10.1109/icpc.2013.6613834 47.

[Ben+07] C. Benthin, S. Boulos, D. Lacewell, and I. Wald. Packet-based Ray Tracing
of Catmull-Clark Subdivision Surfaces. 2007 20.

[Ben+18] C. Benthin, I. Wald, S. Woop, and A. T. Áfra. “Compressed-leaf bounding
volume hierarchies”. In: Proceedings of the Conference on High-Performance
Graphics. ACM, Aug. 2018. doi: 10.1145/3231578.3231581 21.

[Ber+08] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computa-
tional Geometry. Algorithms and Applications. Springer Berlin Heidelberg,
2008. doi: 10.1007/978-3-540-77974-2 16.

[BGF22] M. von Buelow, S. Guthe, and D. W. Fellner. “Fine-Grained Memory
Profiling of GPGPU Kernels”. In: Computer Graphics Forum 41.7 (Oct. 2022):
Pacific Graphics. doi: 10.1111/cgf.14671 6, 28, 34, 47, 49, 77.

[BGG17] M. von Buelow, S. Guthe, andM. Goesele. “Compression of Non-Manifold
Polygonal Meshes Revisited”. In: Vision, Modeling & Visualization. The Eu-
rographics Association, Sept. 2017. doi: 10.2312/vmv.20171266 6, 19,
56, 87.

[BKF23] M. von Buelow, A. Kuijper, and D. W. Fellner. “A GPU Ray Tracing
Implementation for Triangular Grid Primitives”. In: International Conference
on Artificial Reality and Telexistence and Eurographics Symposium on Virtual
Environments Posters and Demos. The Eurographics Association, Dec. 2023.
doi: 10.2312/egve.20231341 6, 52, 85.

[BM13] M. Brehmer and T. Munzner. “A Multi-Level Typology of Abstract Visual-
ization Tasks”. In: IEEE Transactions on Visualization and Computer Graphics
19.12 (Dec. 2013), pp. 2376–2385. doi: 10.1109/tvcg.2013.124 29.

[BP23] C. Benthin and C. Peters. “Real-Time Ray Tracing of Micro-Poly Geometry
with Hierarchical Level of Detail”. In: Computer Graphics Forum 42.8 (Aug.
2023). doi: 10.1111/cgf.14868 5, 21, 52.

[Bue+22a] M. von Buelow, K. Riemann, S. Guthe, and D. W. Fellner. “Profiling and
Visualizing GPU Memory Access and Cache Behavior of Ray Tracers”. In:
Eurographics Symposium on Parallel Graphics and Visualization. best paper
award. The Eurographics Association, June 2022. doi: 10.2312/pgv.
20221061 6, 22, 28, 39, 79.

64

https://doi.org/10.1109/icpc.2013.6613834
https://doi.org/10.1145/3231578.3231581
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1111/cgf.14671
https://doi.org/10.2312/vmv.20171266
https://doi.org/10.2312/egve.20231341
https://doi.org/10.1109/tvcg.2013.124
https://doi.org/10.1111/cgf.14868
https://doi.org/10.2312/pgv.20221061
https://doi.org/10.2312/pgv.20221061

[Bue+22b] M. von Buelow, T. Stensbeck, V. Knauthe, S. Guthe, and D. W. Fell-
ner. “Reconstructing Bounding Volume Hierarchies from Memory Traces
of Ray Tracers”. In: Pacific Graphics Short Papers, Posters, and Work-in-
Progress Papers. The Eurographics Association, Oct. 2022. doi: 10.2312/
pg.20221243 6, 31, 44, 81.

[Bue+24] M. von Buelow, D. Ströter, A. Rak, and D. W. Fellner. “A Visual Profiling
System for Direct Volume Rendering”. In: Eurographics 2024 - Short Papers.
Apr. 2024. doi: 10.2312/egs.20241030 6, 49, 83.

[Bue24] M. von Buelow. GPU Ray Tracing of Triangular Grid Primitives. Tech. rep.
Technical University of Darmstadt, May 2024. doi: 10.26083/tuprints-
00027343 6, 52, 93.

[Bus+16] J. Bush, M. A. Khasawneh, K. Z. Mahmoud, and T. N. Miller. “NyuziRaster.
Optimizing rasterizer performance and energy in the Nyuzi open source
GPU”. In: 2016 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, Apr. 2016, pp. 204–213. doi: 10.
1109/ispass.2016.7482095 27.

[Bus+21] J. Bush, N. Taherinejad, E. Willegger, M. Wojcik, M. Kessler, J. Blat-
nik, I. Daktylidis, J. Ferdigg, and D. Haslauer. “Nyuzi. An Open Source
GPGPU for Graphics, Enhanced with OpenCL Compiler for Calculations”. In:
IEEE Design, Automation & Test in Europe. IEEE. 2021, p. 1 27.

[BVW21] C. Benthin, K. Vaidyanathan, and S.Woop. “Ray Tracing Lossy Compressed
Grid Primitives”. In: Eurographics 2021 - Short Papers. The Eurographics
Association, 2021. doi: 10.2312/EGS.20211009 20.

[CC78] E. Catmull and J. Clark. “Recursively generated B-spline surfaces on
arbitrary topological meshes”. In: Computer-Aided Design 10.6 (Nov. 1978),
pp. 350–355. doi: 10.1016/0010-4485(78)90110-0 20.

[Che+09] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron. “Rodinia. A benchmark suite for heterogeneous computing”. In:
2009 IEEE International Symposium on Workload Characterization (IISWC).
IEEE, Oct. 2009, pp. 44–54. doi: 10.1109/iiswc.2009.5306797 36.

[Che+13] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron. “Pannotia.
Understanding irregular GPGPU graph applications”. In: 2013 IEEE Interna-
tional Symposium on Workload Characterization (IISWC). IEEE, Sept. 2013,
pp. 185–195. doi: 10.1109/iiswc.2013.6704684 36.

65

https://doi.org/10.2312/pg.20221243
https://doi.org/10.2312/pg.20221243
https://doi.org/10.2312/egs.20241030
https://doi.org/10.26083/tuprints-00027343
https://doi.org/10.26083/tuprints-00027343
https://doi.org/10.1109/ispass.2016.7482095
https://doi.org/10.1109/ispass.2016.7482095
https://doi.org/10.2312/EGS.20211009
https://doi.org/10.1016/0010-4485(78)90110-0
https://doi.org/10.1109/iiswc.2009.5306797
https://doi.org/10.1109/iiswc.2013.6704684

[Cit+18] J. Cito, P. Leitner, C. Bosshard, M. Knecht, G. Mazlami, and H. C. Gall.
“PerformanceHat. augmenting source code with runtime performance traces
in the IDE”. In: Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings. ACM, May 2018. doi: 10.1145/
3183440.3183481 47.

[Coo84] R. L. Cook. “Shade trees”. In: ACM SIGGRAPH Computer Graphics 18.3 (Jan.
1984), pp. 223–231. doi: 10.1145/964965.808602 20.

[Cra50] G. Cramer. Introduction à l’analyse des lignes courbes algébriques. chez les
Frères Cramer and Cl. Philibert, 1750. doi: 10.3931/E-RARA-4048 10.

[Dae09] J. Daems. “Euler’s Gem. The Polyhedron Formula and the Birth of Topology
by David S. Richeson”. In: The Mathematical Intelligencer 32.3 (Dec. 2009),
pp. 56–57. doi: 10.1007/s00283-009-9116-0 16.

[DGP04] D. E. DeMarle, C. P. Gribble, and S. G. Parker. “Memory-Savvy Distributed
Interactive Ray Tracing”. In: Eurographics Workshop on Parallel Graphics and
Visualization. The Eurographics Association, 2004. doi: 10.2312/EGPGV/
EGPGV04/093-100 41.

[Eis+12] M. Eisemann, P. Bauszat, S. Guthe, and M. Magnor. “Geometry Presorting
for Implicit Object Space Partitioning”. In: Computer Graphics Forum 31.4
(June 2012), pp. 1445–1454. doi: 10.1111/j.1467- 8659.2012.
03140.x 21.

[Fly66] M. J. Flynn. “Very high-speed computing systems”. In: Proceedings of the
IEEE 54.12 (1966), pp. 1901–1909. doi: 10.1109/proc.1966.5273 23.

[Gra+12] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cava-
zos. “Auto-tuning a high-level language targeted to GPU codes”. In: 2012
Innovative Parallel Computing (InPar). IEEE, May 2012, pp. 1–10. doi:
10.1109/inpar.2012.6339595 36.

[GS87] J. Goldsmith and J. Salmon. “Automatic Creation of Object Hierarchies for
Ray Tracing”. In: IEEE Computer Graphics and Applications 7.5 (May 1987),
pp. 14–20. doi: 10.1109/mcg.1987.276983 14.

[GS98] S. Gumhold and W. Strasser. “Real time compression of triangle mesh
connectivity”. In: Proceedings of the 25th annual conference on Computer
graphics and interactive techniques - SIGGRAPH ’98. ACM Press, 1998. doi:
10.1145/280814.280836 19, 20, 56, 57.

[Gum99] S. Gumhold. “Improved cut-border machine for triangle mesh compression”.
In: Erlangen Workshop. 1999 18, 56, 57.

66

https://doi.org/10.1145/3183440.3183481
https://doi.org/10.1145/3183440.3183481
https://doi.org/10.1145/964965.808602
https://doi.org/10.3931/E-RARA-4048
https://doi.org/10.1007/s00283-009-9116-0
https://doi.org/10.2312/EGPGV/EGPGV04/093-100
https://doi.org/10.2312/EGPGV/EGPGV04/093-100
https://doi.org/10.1111/j.1467-8659.2012.03140.x
https://doi.org/10.1111/j.1467-8659.2012.03140.x
https://doi.org/10.1109/proc.1966.5273
https://doi.org/10.1109/inpar.2012.6339595
https://doi.org/10.1109/mcg.1987.276983
https://doi.org/10.1145/280814.280836

[Hel67] H. von Helmholtz. Allgemeine Encyklopädie der Physik / 9 Handbuch der
physiologischen Optik. Vol. 9. Leopold Voss, 1867. doi: 10.3931/E-RARA-
21259 9.

[HIC10] M. Harward, W. Irwin, and N. Churcher. “In Situ Software Visualisation”.
In: 2010 21st Australian Software Engineering Conference. IEEE, 2010. doi:
10.1109/aswec.2010.18 47.

[HS86] W. D. Hillis and G. L. Steele. “Data parallel algorithms”. In: Communica-
tions of the ACM 29.12 (Dec. 1986), pp. 1170–1183. doi: 10.1145/7902.
7903 3.

[Isa+14] K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, B.
Hamann, and P.-T. Bremer. “State of the Art of Performance Visualization”.
In: EuroVis - STARs. The Eurographics Association, 2014. doi: 10.2312/
EUROVISSTAR.20141177 30.

[Jia+19] Z. Jia, M. Maggioni, J. Smith, and D. P. Scarpazza. “Dissecting the NVidia
Turing T4 GPU via Microbenchmarking”. In: (2019). doi: 10.48550/
ARXIV.1903.07486. Pre-published 36.

[Kar+19] A. Karki, C. P. Keshava, S. M. Shivakumar, J. Skow, G. M. Hegde, and
H. Jeon. “Detailed Characterization of Deep Neural Networks on GPUs and
FPGAs”. In: Proceedings of the 12th Workshop on General Purpose Processing
Using GPUs. ACM, Apr. 2019. doi: 10.1145/3300053.3319418 36.

[KDY10] A. Kerr, G. Diamos, and S. Yalamanchili. “Modeling GPU-CPU workloads
and systems”. In: Proceedings of the 3rd Workshop on General-Purpose Com-
putation on Graphics Processing Units. ACM, Mar. 2010. doi: 10.1145/
1735688.1735696 27.

[Kel+13] A. Keller, T. Karras, I. Wald, T. Aila, S. Laine, J. Bikker, C. Gribble,
W.-J. Lee, and J. McCombe. “Ray tracing is the future and ever will be...” In:
ACM SIGGRAPH 2013 Courses. ACM, July 2013. doi: 10.1145/2504435.
2504444 9.

[Kha+20] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers. “Accel-Sim. An
Extensible Simulation Framework for Validated GPU Modeling”. In: 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, May 2020, pp. 473–486. doi: 10.1109/isca45697.2020.
00047 27.

67

https://doi.org/10.3931/E-RARA-21259
https://doi.org/10.3931/E-RARA-21259
https://doi.org/10.1109/aswec.2010.18
https://doi.org/10.1145/7902.7903
https://doi.org/10.1145/7902.7903
https://doi.org/10.2312/EUROVISSTAR.20141177
https://doi.org/10.2312/EUROVISSTAR.20141177
https://doi.org/10.48550/ARXIV.1903.07486
https://doi.org/10.48550/ARXIV.1903.07486
https://doi.org/10.1145/3300053.3319418
https://doi.org/10.1145/1735688.1735696
https://doi.org/10.1145/1735688.1735696
https://doi.org/10.1145/2504435.2504444
https://doi.org/10.1145/2504435.2504444
https://doi.org/10.1109/isca45697.2020.00047
https://doi.org/10.1109/isca45697.2020.00047

[KSW21] B. Karis, R. Stubbe, and G. Wihlidal. “A Deep Dive into Nanite Virtualized
Geometry”. In: Advances in Real-Time Rendering in Games: Part I (proc.
SIGGRAPH courses). 2021. url: https://advances.realtimerend
ering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_
final.pdf 52.

[Lan98] W. B. Langdon. Genetic Programming and Data Structures. Springer US,
1998. doi: 10.1007/978-1-4615-5731-9 19.

[LI06] P. Lindstrom and M. Isenburg. “Fast and Efficient Compression of Floating-
Point Data”. In: IEEE Transactions on Visualization and Computer Graphics
12.5 (Sept. 2006), pp. 1245–1250. doi: 10.1109/tvcg.2006.143 58.

[Luk+05] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood. “Pin. building customized program analy-
sis tools with dynamic instrumentation”. In: Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and implementation.
ACM, June 2005. doi: 10.1145/1065010.1065034 26.

[Mag+15] A. Maglo, G. Lavoué, F. Dupont, and C. Hudelot. “3D Mesh Compression.
Survey, Comparisons, and Emerging Trends”. In: ACM Computing Surveys
47.3 (Feb. 2015), pp. 1–41. doi: 10.1145/2693443 57.

[MB90] J. D. MacDonald and K. S. Booth. “Heuristics for ray tracing using space
subdivision”. In: The Visual Computer 6.3 (May 1990), pp. 153–166. doi:
10.1007/bf01911006 14, 15.

[MC17] X.Mei and X. Chu. “Dissecting GPUMemory Hierarchy ThroughMicrobench-
marking”. In: IEEE Transactions on Parallel and Distributed Systems 28.1 (Jan.
2017), pp. 72–86. doi: 10.1109/tpds.2016.2549523 25, 27.

[Mei+21] D. Meister, S. Ogaki, C. Benthin, M. J. Doyle, M. Guthe, and J. Bittner.
“A Survey on Bounding Volume Hierarchies for Ray Tracing”. In: Computer
Graphics Forum 40.2 (May 2021), pp. 683–712. doi: 10.1111/cgf.
142662 13.

[MMT23] A. Maggiordomo, H. Moreton, and M. Tarini. “Micro-Mesh Construction”.
In: ACM Transactions on Graphics 42.4 (July 2023), pp. 1–18. doi: 10.
1145/3592440 20, 21, 52.

[Möb27] A. F. Möbius. Der barycentrische Calcul. Barth, 1827. doi: 10.3931/E-
RARA-14538 10.

68

https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf
https://doi.org/10.1007/978-1-4615-5731-9
https://doi.org/10.1109/tvcg.2006.143
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/2693443
https://doi.org/10.1007/bf01911006
https://doi.org/10.1109/tpds.2016.2549523
https://doi.org/10.1111/cgf.142662
https://doi.org/10.1111/cgf.142662
https://doi.org/10.1145/3592440
https://doi.org/10.1145/3592440
https://doi.org/10.3931/E-RARA-14538
https://doi.org/10.3931/E-RARA-14538

[MRR12] M. McCool, J. Reinders, and A. Robison. Structured Parallel Programming.
Patterns for Efficient Computation. Morgan Kaufmann Publishers Inc., 2012.
isbn: 9780123914439 23.

[MT97] T. Möller and B. Trumbore. “Fast, Minimum Storage Ray-Triangle In-
tersection”. In: Journal of Graphics Tools 2.1 (Jan. 1997), pp. 21–28. doi:
10.1080/10867651.1997.10487468 10.

[Nag06] H. R. Nagel. “Scientific visualization versus information visualization”. In:
Workshop on state-of-the-art in scientific and parallel computing, Sweden.
2006, pp. 8–9 28.

[Nic+77] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T.
Limperis. “Geometrical considerations and nomenclature for reflectance”.
In: Radiometry. National Bureau of Standards, 1977. doi: 10.6028/nbs.
mono.160 9.

[Nug+14] C. Nugteren, G.-J. van den Braak, H. Corporaal, and H. Bal. “A detailed
GPU cache model based on reuse distance theory”. In: 2014 IEEE 20th
International Symposium on High Performance Computer Architecture (HPCA).
IEEE, Feb. 2014, pp. 37–48. doi: 10.1109/hpca.2014.6835955 28.

[NVI20] NVIDIA Corporation. Optimizing CUDA Applications for NVIDIA A100 GPU.
2020. url: https://developer.download.nvidia.com/video/
gputechconf/gtc/2020/presentations/s21819-optimizing-
applications-for-nvidia-ampere-gpu-architecture.pdf
23, 25.

[NVI22] NVIDIA Corporation. CUDA Programming Guide. 2022. url: https://
docs.nvidia.com/cuda/cuda-c-programming-guide 4, 25, 35.

[NVI23] NVIDIA Corporation. Micro-Mesh Graphics Primitive For Micro Triangles.
2023. url: https://developer.nvidia.com/rtx/ray-tracing/
micro-mesh 21.

[Par+10] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Lue-
bke, D. McAllister, M. McGuire, K. Morley, A. Robison, and M. Stich.
“OptiX. a general purpose ray tracing engine”. In: ACM Transactions on Graph-
ics 29.4 (July 2010), pp. 1–13. doi: 10.1145/1778765.1778803 39,
52.

[PBS24] A. Pauli, M. von Buelow, and D. Ströter. In-Situ Profiling Feedback for
GPGPU Code. Tech. rep. Technical University of Darmstadt, May 2024. doi:
10.26083/tuprints-00027344 6, 47, 91.

69

https://doi.org/10.1080/10867651.1997.10487468
https://doi.org/10.6028/nbs.mono.160
https://doi.org/10.6028/nbs.mono.160
https://doi.org/10.1109/hpca.2014.6835955
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21819-optimizing-applications-for-nvidia-ampere-gpu-architecture.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21819-optimizing-applications-for-nvidia-ampere-gpu-architecture.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21819-optimizing-applications-for-nvidia-ampere-gpu-architecture.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21819-optimizing-applications-for-nvidia-ampere-gpu-architecture.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide
https://developer.nvidia.com/rtx/ray-tracing/micro-mesh
https://developer.nvidia.com/rtx/ray-tracing/micro-mesh
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.26083/tuprints-00027344

[PJH17] M. Pharr, W. Jakob, and G. Humphreys. Physically Based Rendering. Else-
vier, 2017. doi: 10.1016/c2013-0-15557-2 3, 52.

[Red+04] V. J. Reddi, A. Settle, D. A. Connors, and R. S. Cohn. “PIN. a binary
instrumentation tool for computer architecture research and education”. In:
Proceedings of the 2004 workshop on Computer architecture education held in
conjunction with the 31st International Symposium on Computer Architecture
- WCAE ’04. ACM Press, 2004. doi: 10.1145/1275571.1275600 26.

[SB87] J. M. Snyder and A. H. Barr. “Ray tracing complex models containing
surface tessellations”. In: Proceedings of the 14th annual conference on Com-
puter graphics and interactive techniques. ACM, Aug. 1987. doi: 10.1145/
37401.37417 20.

[Sch+11] M. Schulz, J. A. Levine, P.-T. Bremer, T. Gamblin, and V. Pascucci.
“Interpreting Performance Data across Intuitive Domains”. In: 2011 Interna-
tional Conference on Parallel Processing. IEEE, Sept. 2011, pp. 206–215. doi:
10.1109/icpp.2011.60 7, 28–30, 51.

[SE10] B. Segovia and M. Ernst. “Memory Efficient Ray Tracing with Hierarchical
Mesh Quantization”. In: Proceedings of Graphics Interface 2010. Canadian
Information Processing Society, 2010. isbn: 9781568817125 21.

[Sha98] C. Shannon. “Communication In The Presence Of Noise”. In: Proceedings
of the IEEE 86.2 (Feb. 1998), pp. 447–457. doi: 10.1109/jproc.1998.
659497 46.

[SK04] L. A. Santaló and M. Kac. Integral Geometry and Geometric Probability. Cam-
bridge University Press, Oct. 2004. doi: 10.1017/cbo9780511617331 14.

[SSH08] J. A. Stratton, S. S. Stone, and W.-m. W. Hwu. “MCUDA. An Efficient
Implementation of CUDA Kernels for Multi-core CPUs”. In: Languages and
Compilers for Parallel Computing. Springer Berlin Heidelberg, 2008, pp. 16–
30. doi: 10.1007/978-3-540-89740-8_2 27.

[TG98] C. Touma and C. Gotsman. “Triangle Mesh Compression”. In: Proceedings
of the Graphics Interface 1998 Conference. Canadian Human-Computer Com-
munications Society, 1998, pp. 26–34. doi: 10.20380/GI1998.04 57.

[Tho+21] T. Thonat, F. Beaune, X. Sun, N. Carr, and T. Boubekeur. “Tessellation-
free displacement mapping for ray tracing”. In: ACM Transactions on Graphics
40.6 (Dec. 2021), pp. 1–16. doi: 10.1145/3478513.3480535 20.

70

https://doi.org/10.1016/c2013-0-15557-2
https://doi.org/10.1145/1275571.1275600
https://doi.org/10.1145/37401.37417
https://doi.org/10.1145/37401.37417
https://doi.org/10.1109/icpp.2011.60
https://doi.org/10.1109/jproc.1998.659497
https://doi.org/10.1109/jproc.1998.659497
https://doi.org/10.1017/cbo9780511617331
https://doi.org/10.1007/978-3-540-89740-8_2
https://doi.org/10.20380/GI1998.04
https://doi.org/10.1145/3478513.3480535

[TYL11] T. Tang, X. Yang, and Y. Lin. “Cache Miss Analysis for GPU Programs
Based on Stack Distance Profile”. In: 2011 31st International Conference
on Distributed Computing Systems. IEEE, June 2011, pp. 623–634. doi:
10.1109/icdcs.2011.16 28.

[Vil+19] O. Villa, M. Stephenson, D. Nellans, and S. W. Keckler. “NVBit. A Dy-
namic Binary Instrumentation Framework for NVIDIA GPUs”. In: Proceedings
of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, Oct. 2019. doi: 10.1145/3352460.3358307 27, 35.

[VWB19] K. Vaidyanathan, S. Woop, and C. Benthin. “Wide BVH Traversal with a
Short Stack”. In: High-Performance Graphics - Short Papers. The Eurographics
Association, 2019. doi: 10.2312/HPG.20191190 21.

[Wal+01] I. Wald, P. Slusallek, C. Benthin, and M. Wagner. “Interactive Rendering
with Coherent Ray Tracing”. In: Computer Graphics Forum 20.3 (Sept. 2001),
pp. 153–165. doi: 10.1111/1467-8659.00508 5.

[Wal+07] I. Wald, W. R. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt, S. G.
Parker, and P. Shirley. “State of the Art in Ray Tracing Animated Scenes”.
In: Eurographics 2007 - State of the Art Reports. The Eurographics Association,
2007. doi: 10.2312/EGST.20071056 14.

[WG17] D. Wodniok and M. Goesele. “Construction of bounding volume hierarchies
with SAH cost approximation on temporary subtrees”. In: Computers &
Graphics 62 (Feb. 2017), pp. 41–52. doi: 10.1016/j.cag.2016.12.
003 16.

[Whi79] T. Whitted. “An improved illumination model for shaded display”. In: ACM
SIGGRAPH Computer Graphics 13.2 (Aug. 1979), p. 14. doi: 10.1145/
965103.807419 9.

[WMZ22] I. Wald, N. Morrical, and S. Zellmann. “A Memory Efficient Encoding for
Ray Tracing Large Unstructured Data”. In: IEEE Transactions on Visualization
and Computer Graphics 28.1 (Jan. 2022), pp. 583–592. doi: 10.1109/
tvcg.2021.3114869 21, 41.

[Wod+13] D. Wodniok, A. Schulz, S. Widmer, and M. Goesele. “Analysis of Cache
Behavior and Performance of Different BVH Memory Layouts for Tracing
Incoherent Rays”. In: Eurographics Symposium on Parallel Graphics and
Visualization. The Eurographics Association, 2013. doi: 10.2312/EGPGV/
EGPGV13/057-064 41.

71

https://doi.org/10.1109/icdcs.2011.16
https://doi.org/10.1145/3352460.3358307
https://doi.org/10.2312/HPG.20191190
https://doi.org/10.1111/1467-8659.00508
https://doi.org/10.2312/EGST.20071056
https://doi.org/10.1016/j.cag.2016.12.003
https://doi.org/10.1016/j.cag.2016.12.003
https://doi.org/10.1145/965103.807419
https://doi.org/10.1145/965103.807419
https://doi.org/10.1109/tvcg.2021.3114869
https://doi.org/10.1109/tvcg.2021.3114869
https://doi.org/10.2312/EGPGV/EGPGV13/057-064
https://doi.org/10.2312/EGPGV/EGPGV13/057-064

[WX16] D. Wang and W. Xiao. “A reuse distance based performance analysis on GPU
L1 data cache”. In: 2016 IEEE 35th International Performance Computing
and Communications Conference (IPCCC). IEEE, Dec. 2016, pp. 1–8. doi:
10.1109/pccc.2016.7820638 28.

[Zha+13] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song,
and W. Zou. “Practical Control Flow Integrity and Randomization for Binary
Executables”. In: 2013 IEEE Symposium on Security and Privacy. IEEE, May
2013, pp. 559–573. doi: 10.1109/sp.2013.44 26.

[ZS15] M. Zhang and R. Sekar. “Control Flow and Code Integrity for COTS binaries.
An Effective Defense Against Real-World ROP Attacks”. In: Proceedings of
the 31st Annual Computer Security Applications Conference. ACM, Dec. 2015.
doi: 10.1145/2818000.2818016 26.

72

https://doi.org/10.1109/pccc.2016.7820638
https://doi.org/10.1109/sp.2013.44
https://doi.org/10.1145/2818000.2818016

Part II.

Publications

73

5. Peer-Reviewed Publications

This chapter includes all peer-reviewed works that establish the foundations of this thesis.

75

5.1. Fine-Grained Memory Profiling of GPGPU Kernels

M. von Buelow, S. Guthe, and D. W. Fellner
Computer Graphics Forum 41.7 (2022): Pacific Graphics
DOI: 10.1111/cgf.14671

Abstract

Memory performance is a crucial bottleneck in many GPGPU applications, making opti-
mizations for hardware and software mandatory. While hardware vendors already use
highly efficient caching architectures, software engineers usually have to organize their
data accordingly in order to efficiently make use of these, requiring deep knowledge of
the actual hardware. In this paper we present a novel technique for fine-grained mem-
ory profiling that simulates the whole pipeline of memory flow and finally accumulates
profiling values in a way that the user retains information about the potential region in
the GPU program by showing these values separately for each allocation. Our memory
simulator turns out to outperform state-of-the-art memory models of NVIDIA architectures
by a magnitude of 2.4 for the L1 cache and 1.3 for the L2 cache, in terms of accuracy.
Additionally, we find our technique of fine grained memory profiling a useful tool for
memory optimizations, which we successfully show in case of ray tracing and machine
learning applications.

Copyright notice

© 2022 The authors

License information

This work is licensed under the Creative Commons Attribution 4.0 license.

77

https://doi.org/10.1111/cgf.14671

5.2. Profiling and Visualizing GPU Memory Access and Cache
Behavior of Ray Tracers

M. von Buelow, K. Riemann, S. Guthe, and D. W. Fellner
Eurographics Symposium on Parallel Graphics and Visualization 2022
DOI: 10.2312/pgv.20221061

Abstract

Graphical processing units (GPUs) have gained popularity in recent years due to their
efficiency in running massively parallel applications. Recent developments have also
adapted ray-tracing algorithms to the GPU, where the bottleneck in the overall performance
is usually given by the memory bandwidth. In this paper, we present an interactive, web-
based visualization tool for GPU memory traces that provides visual insight into the
memory and cache behavior of our reference ray tracer, by mapping internal GPU state
back onto 3D objects. In order to visualize cache behavior, we use reuse distances on
both GPU cache layers that are calculated on the basis of memory traces extracted from
a real GPU using binary instrumentation. An advantage of our system is that it runs
independently of the ray-tracing program. We further show visualizations of our GPU ray
tracer and compare the visualizations of several ray-tracing approaches. We find our work
to act as a convenient toolset to gather insights on which data structures and mesh regions
can be cached efficiently, and how ray-tracing acceleration structures behave on various
input meshes, bounding volume hierarchies, memory layouts, frame buffer resolutions,
and work distribution techniques.

Copyright notice

© 2022 The authors

License information

This work is licensed under the Creative Commons Attribution 4.0 license.

Awards

This work received the EG PGV 2022 best paper award.

79

https://doi.org/10.2312/pgv.20221061

5.3. Reconstructing Bounding Volume Hierarchies from Memory
Traces of Ray Tracers

M. von Buelow, T. Stensbeck, V. Knauthe, S. Guthe, and D. W. Fellner
Pacific Graphics Short Papers, Posters, and Work-in-Progress Papers 2022
DOI: 10.2312/pg.20221243

Abstract

The ongoing race to improve computer graphics leads to more complex GPU hardware
and ray tracing techniques whose internal functionality is sometimes hidden to the user.
Bounding volume hierarchies and their construction are an important performance aspect
of such ray tracing implementations. We propose a novel approach that utilizes binary
instrumentation to collect memory traces and then uses them to extract the bounding
volume hierarchy (BVH) by analyzing access patters. Our reconstruction allows combining
memory traces captured from multiple ray tracing views independently, increasing the
reconstruction result. It reaches accuracies of 30% to 45% when comparing against the
ground-truth BVH used for ray tracing a single view on a simple scene with one object.
With multiple views it is even possible to reconstruct the whole BVH, while we already
achieve 98% with just seven views. Because our approach is largely independent of the
data structures used internally, these accurate reconstructions serve as a first step into
estimation of unknown construction techniques of ray tracing implementations.

Copyright notice

© 2022 The authors

License information

This work is licensed under the Creative Commons Attribution 4.0 license.

81

https://doi.org/10.2312/pg.20221243

5.4. A Visual Profiling System for Direct Volume Rendering

M. von Buelow, D. Ströter, A. Rak, and D. W. Fellner
Eurographics 2024 - Short Papers 2024
DOI: 10.2312/egs.20241030

Abstract

Direct Volume Rendering (DVR) is a crucial technique that enables interactive exploration
of results from scientific computing or computer graphics. Its applications range from
virtual prototyping for product design to computer-aided diagnosis in medicine. Although
there are many existing DVR optimizations, they do not provide a thorough analysis of
memory-specific hardware behavior. This paper introduces a profiling toolkit that enables
the extraction of performance metrics, such as cache hit rates and branching, from a
compiled GPU-based DVR application. The metrics are visualized in the image domain to
facilitate spatial visual analysis. This paper presents a pipeline that automatically extracts
memory traces using binary instrumentation, simulates the GPU memory subsystem,
and models DVR-specific functionality within it. The profiler is demonstrated using the
Octree-Linear Bounding Volume Hierarchy (OLBVH), and the visualized profiling metrics
are explained based on the OLBVH implementation. Our discussion demonstrates that
optimizing ray traversal for adaptive sampling, cache usage, branching, and global memory
access has the potential to improve performance.

Copyright notice

© 2024 The authors

License information

This work is licensed under the Creative Commons Attribution 4.0 license.

83

https://doi.org/10.2312/egs.20241030

5.5. A GPU Ray Tracing Implementation for Triangular Grid
Primitives

M. von Buelow, A. Kuijper, and D. W. Fellner
International Conference on Artificial Reality and Telexistence and Eurographics Symposium
on Virtual Environments Posters and Demos 2023
DOI: 10.2312/egve.20231341

Abstract

Triangular grid primitives are a new technique for more efficient handling of memory
intensive meshes, also called micro meshes in recent proprietary hardware implementa-
tions. This makes it a technique with high potential in the area of virtual environments
where hardware capabilities are typically limited. In this poster, we focus on software ray
tracing on GPUs and present a novel, easy-to-implement approach that uses a two-level
bounding volume hierarchy (BVH) to accelerate these grids. The primary goal of our
work is to make the technology more accessible by focusing on standard GPU devices
without hardware ray tracing units. With our approach, we are able to encode geometry
and BVH with approximately 7.5 bytes per triangle, reducing standard representations by
a factor of 3.73 while reducing BVH construction time. Our data structure achieves a peak
performance impact of 16% for a three-level subdivision.

Copyright notice

© 2023 The authors

License information

This work is licensed under the Creative Commons Attribution 4.0 license.

85

https://doi.org/10.2312/egve.20231341

5.6. Compression of Non-Manifold Polygonal Meshes Revisited

M. von Buelow, S. Guthe, and M. Goesele
Vision, Modeling & Visualization 2017
DOI: 10.2312/vmv.20171266

Abstract

Polygonal meshes are used in various fields ranging from CAD to gaming and web based
applications. Reducing the size required for storing and transmitting these meshes by
taking advantage of redundancies is an important aspect in all of these cases. In this
paper, we present a connectivity based compression approach that predicts attributes and
stores differences to the predictions together with minimal connectivity information. It is
an extension to the Cut-Border Machine and applicable to arbitrary manifold and non-
manifold polygonal meshes containing multiple attributes of different types. It compresses
both the connectivity and attributes without loss outside of re-ordering vertices and
polygons. In addition, an optional quantization step can be used to further reduce the
data if a certain loss of accuracy is acceptable. Our method outperforms state-of-the-art
compression techniques, including specialized triangle mesh compression approaches
when applicable. Typical compression rates for our approach range from 2:1 to 6:1 for
lossless compression and up to 25:1 when quantizing to 14 bit accuracy.

Copyright notice

© 2017 The authors

License information

This work is exclusively licensed to The Eurographics Association.

87

https://doi.org/10.2312/vmv.20171266

6. Unpublished Works

In addition to peer-reviewed works, there are also unpublished or works currently under
review that provide additional valuable contributions to this thesis. These works are
presented below.

89

6.1. In-Situ Profiling Feedback for GPGPU Code

A. Pauli, M. von Buelow, and D. Ströter
DOI: 10.26083/tuprints-00027344

Abstract

The evolving landscape of software development increasingly prioritizes functionality,
maintainability, and developer productivity. This typically comes hand in hand with
the shortcoming that less focus is invested on optimizing for runtime performance of
programs. However, optimizing for performance is an important task in time-critical
domains. Additionally, optimizing for performance can be an important way of reducing
actual hardware requirements and achieving a better ecological footprint. So, why not
bringing program optimization closer to the software engineer and reducing the disconnect
between profiling results and their interpretability? This poster presents a GPU-focused
in-situ profiling approach that visualizes memory profiling metrics directly inside the
source code and gives the software engineer an direct hint for identifying inefficient parts
during development. Performance metrics evaluated on each line are highlighted in the
source code.

Copyright notice

© 2024 The authors

License information

This work is licensed under the Creative Commons Attribution 4.0 license.

91

https://doi.org/10.26083/tuprints-00027344

6.2. GPU Ray Tracing of Triangular Grid Primitives

M. von Buelow
DOI: 10.26083/tuprints-00027343

Abstract

Triangular grid primitives are a technique used to handle memory-intensive meshes more
efficiently. They are also referred to as micro meshes in recent proprietary hardware
implementations. This representation can reduce the memory footprint during ray tracing
of subdivision surfaces or displacement maps that may result from mesh simplification.
This paper presents a novel approach to accelerate GPU software ray tracing using a
two-level bounding volume hierarchy (BVH) to store vertices in a non-redundant manner.
The primary goal is to make the technology more accessible by focusing on standard
GPU devices. The bottom-level BVH strictly follows the subdivision recursion, allowing
for the side effect of rendering intermediate recursion depths. Our approach enables
us to encode geometry and BVH using approximately 6.3 bytes per triangle, reducing
standard representations by a factor of 4.5. Additionally, the construction time of the
BVH is reduced. Our data structure achieves a peak performance impact of 16% for a
three-level subdivision.

Copyright notice

© 2024 The authors

License information

This work is licensed under the Creative Commons Attribution 4.0 license.

93

https://doi.org/10.26083/tuprints-00027343

7. Complete Publication List

In addition to the publications listed in Section 7.1 of this thesis, I have co-authored several
papers in the field of visual computing. The following sections group these papers into
three topics.

7.1. Core Publications

[BGF22] M. von Buelow, S. Guthe, and D. W. Fellner. “Fine-Grained Memory
Profiling of GPGPU Kernels”. In: Computer Graphics Forum 41.7 (Oct. 2022):
Pacific Graphics. doi: 10.1111/cgf.14671.

[BGG17] M. von Buelow, S. Guthe, andM. Goesele. “Compression of Non-Manifold
Polygonal Meshes Revisited”. In: Vision, Modeling & Visualization. The Euro-
graphics Association, Sept. 2017. doi: 10.2312/vmv.20171266.

[BKF23] M. von Buelow, A. Kuijper, and D. W. Fellner. “A GPU Ray Tracing
Implementation for Triangular Grid Primitives”. In: International Conference
on Artificial Reality and Telexistence and Eurographics Symposium on Virtual
Environments Posters and Demos. The Eurographics Association, Dec. 2023.
doi: 10.2312/egve.20231341.

[Bue+22a] M. von Buelow, K. Riemann, S. Guthe, and D. W. Fellner. “Profiling and
Visualizing GPU Memory Access and Cache Behavior of Ray Tracers”. In:
Eurographics Symposium on Parallel Graphics and Visualization. best paper
award. The Eurographics Association, June 2022. doi: 10.2312/pgv.
20221061.

[Bue+22b] M. von Buelow, T. Stensbeck, V. Knauthe, S. Guthe, and D. W. Fell-
ner. “Reconstructing Bounding Volume Hierarchies from Memory Traces
of Ray Tracers”. In: Pacific Graphics Short Papers, Posters, and Work-in-
Progress Papers. The Eurographics Association, Oct. 2022. doi: 10.2312/
pg.20221243.

95

https://doi.org/10.1111/cgf.14671
https://doi.org/10.2312/vmv.20171266
https://doi.org/10.2312/egve.20231341
https://doi.org/10.2312/pgv.20221061
https://doi.org/10.2312/pgv.20221061
https://doi.org/10.2312/pg.20221243
https://doi.org/10.2312/pg.20221243

[Bue+24] M. von Buelow, D. Ströter, A. Rak, and D. W. Fellner. “A Visual Profiling
System for Direct Volume Rendering”. In: Eurographics 2024 - Short Papers.
Apr. 2024. doi: 10.2312/egs.20241030.

[Bue24] M. von Buelow. GPU Ray Tracing of Triangular Grid Primitives. Tech. rep.
Technical University of Darmstadt, May 2024. doi: 10.26083/tuprints-
00027343.

[PBS24] A. Pauli, M. von Buelow, and D. Ströter. In-Situ Profiling Feedback for
GPGPU Code. Tech. rep. Technical University of Darmstadt, May 2024. doi:
10.26083/tuprints-00027344.

96

https://doi.org/10.2312/egs.20241030
https://doi.org/10.26083/tuprints-00027343
https://doi.org/10.26083/tuprints-00027343
https://doi.org/10.26083/tuprints-00027344

7.2. Archiving of Cultural Heritage Images

The following works are the result of a joint project with Fraunhofer IGD aimed at archiving
images from cultural heritage datasets. We have developed a novel technique that uses
depth-of-field segmentations to encode the foreground and background of these images
independently using lossy and lossless image compression algorithms. Our proposed
algorithm relies on well-documented standard image compression algorithms and is
therefore suitable for long-term archiving.

[Bue+19] M. von Buelow, S. Guthe, M. Ritz, P. Santos, and D. W. Fellner. “Loss-
less Compression of Multi-View Cultural Heritage Image Data”. In: Euro-
graphics Workshop on Graphics and Cultural Heritage. The Eurographics
Association, Nov. 2019. doi: 10.2312/gch.20191343.

[Bue+20] M. von Buelow, R. Tausch, V. Knauthe, T. Wirth, S. Guthe, P. San-
tos, and D. W. Fellner. “Segmentation-Based Near-Lossless Compression
of Multi-View Cultural Heritage Image Data”. In: Eurographics Workshop
on Graphics and Cultural Heritage. best paper award. The Eurographics
Association, Nov. 2020. doi: 10.2312/gch.20201294.

[Bue+22] M. von Buelow, R. Tausch, M. Schurig, V. Knauthe, T. Wirth, S. Guthe,
P. Santos, and D. W. Fellner. “Depth of Field Segmentation for Near-
Lossless Image Compression and 3D Reconstruction”. In: Journal on Comput-
ing and Cultural Heritage 15.3 (Sept. 2022). invited paper. doi: 10.1145/
3500924.

97

https://doi.org/10.2312/gch.20191343
https://doi.org/10.2312/gch.20201294
https://doi.org/10.1145/3500924
https://doi.org/10.1145/3500924

7.3. Scanning System for Tensile Testing Specimens

The following work deals with tensile testing in materials science. We developed an
automated 3D scanning system, which outperforms state-of-the-art manual measurement
approaches. The system comprises the scanning setup, data acquisition, calibration, and
evaluation.

[Kna+22] V. Knauthe, M. Kraus, M. von Buelow, T. Wirth, A. Rak, L. Merth,
A. Erbe, C. Kontermann, S. Guthe, A. Kuijper, and D. W. Fellner.
“Alignment and Reassembling of Broken Specimens for Creep Ductility
Measurements”. In: Vision, Modeling & Visualization. The Eurographics
Association, Sept. 2022. doi: 10.2312/vmv.20221201.

[Kon+23] C. Kontermann, A. Erbe, V. Knauthe, M. von Buelow, T.-U. Kern, and
M. Oechsner. “Uniform Elongation Measurements on Creep Specimens by
a Novel 3D-Scanning System”. In: Materials at High Temperatures 40 (May
2023): 6th International ECCC Creep & Fracture Conference. doi: 10.1080/
09603409.2023.2261783.

[Neu+22] K. A. Neumann, P. P. Hoffmann, M. von Buelow, V. Knauthe, T. Wirth, C.
Kontermann, A. Kuijper, S. Guthe, and D. W. Fellner. “A Structure from
Motion Pipeline for Orthographic Multi-View Images”. In: International Con-
ference on Image Processing. Institute of Electrical and Electronics Engineers
(IEEE), Oct. 2022. doi: 10.1109/ICIP46576.2022.9897368.

98

https://doi.org/10.2312/vmv.20221201
https://doi.org/10.1080/09603409.2023.2261783
https://doi.org/10.1080/09603409.2023.2261783
https://doi.org/10.1109/ICIP46576.2022.9897368

7.4. Miscellaneous

[Jou+21] N. Jourdan, T. Biegel, V. Knauthe, M. von Buelow, S. Guthe, and J.
Metternich. “A computer vision system for saw blade condition monitor-
ing”. In: Procedia CIRP 104 (Nov. 2021), pp. 1107–1112. doi: 10.1016/j.
procir.2021.11.186.

[Kna+23] V. Knauthe, T. Pöllabauer, K. Faller, M. Kraus, T. Wirth, M. von
Buelow, A. Kuijper, and D. W. Fellner. “Distortion-Based Transparency
Detection using Deep Learning on a Novel Synthetic Image Dataset”. In:
Scandinavian Conference on Image Analysis. Springer Nature Switzerland,
Apr. 2023. doi: 10.1007/978-3-031-31435-3_17.

[Thu+16] D. Thuerck, M. Waechter, S. Widmer, M. von Buelow, P. Seemann,
M. E. Pfetsch, and M. Goesele. “A Fast, Massively Parallel Solver for
Large, Irregular Pairwise Markov Random Fields”. In: Eurographics/ ACM
SIGGRAPH Symposium on High Performance Graphics. The Eurographics
Association, June 2016. doi: 10.2312/hpg.20161203.

[Wir+22] T. Wirth, A. Jamili, M. v. Buelow, V. Knauthe, and S. Guthe. “Fitness of
General-Purpose Monocular Depth Estimation Architectures for Transparent
Structures”. In: Eurographics Short Papers. The Eurographics Association,
Apr. 2022. doi: 10.2312/egs.20221020.

[Wir+24] T. Wirth, A. Rak, M. von Buelow, V. Knauthe, A. Kuijper, and D. W.
Fellner. “NeRF-FF. A Plug-In Method to Mitigate Defocus-Blur for Run-
Time Optimized Neural Radiance Fields”. In: The Visual Computer 40 (July
2024): CGI’2024 Conference. doi: 10.1007/s00371-024-03507-y.

99

https://doi.org/10.1016/j.procir.2021.11.186
https://doi.org/10.1016/j.procir.2021.11.186
https://doi.org/10.1007/978-3-031-31435-3_17
https://doi.org/10.2312/hpg.20161203
https://doi.org/10.2312/egs.20221020
https://doi.org/10.1007/s00371-024-03507-y

	Synopsis
	Introduction
	Motivation
	Contribution Overview

	Background
	Ray Tracing
	Intersections
	Bounding Volume Hierarchies
	BVH Quality Metrics

	Compression in Computer Graphics
	Polygonal Mesh Formation
	Mesh Representations
	Cut-Border Machine
	Structured Primitives
	Compressed BVH

	GPU Architecture
	Units of Execution
	Memory Spaces
	Binary Instrumentation
	GPU Simulation

	Performance Visualization
	Information Visualization
	The HAC Model

	Papers and Contributions
	Fine-Grained Memory Profiling of GPGPU Kernels
	Motivation and Contributions
	Methods and Findings
	Discussion
	Individual Contributions

	Profiling and Visualizing GPU Memory Access and Cache Behavior of Ray Tracers
	Motivation and Contributions
	Methods and Findings
	Discussion
	Individual Contributions

	Reconstructing Bounding Volume Hierarchies from Memory Traces of Ray Tracers
	Motivation and Contributions
	Methods and Findings
	Discussion
	Individual Contributions

	In-Situ Profiling Feedback for GPGPU Code
	Motivation and Contributions
	Methods and Findings
	Discussion
	Individual Contributions

	A Visual Profiling System for Direct Volume Rendering
	Motivation and Contributions
	Methods and Findings
	Discussion
	Individual Contributions

	GPU Ray Tracing of Triangular Grid Primitives
	Motivation and Contributions
	Methods and Findings
	Discussion
	Individual Contributions (Poster Paper)
	Individual Contributions (Unshortened Version)

	Compression of Non-Manifold Polygonal Meshes Revisited
	Motivation and Contributions
	Methods and Findings
	Discussion
	Individual Contributions

	Discussion
	Summary of Contributions
	Limitations
	Future Work

	Publications
	Peer-Reviewed Publications
	Fine-Grained Memory Profiling of GPGPU Kernels
	Profiling and Visualizing GPU Memory Access and Cache Behavior of Ray Tracers
	Reconstructing Bounding Volume Hierarchies from Memory Traces of Ray Tracers
	A Visual Profiling System for Direct Volume Rendering
	A GPU Ray Tracing Implementation for Triangular Grid Primitives
	Compression of Non-Manifold Polygonal Meshes Revisited

	Unpublished Works
	In-Situ Profiling Feedback for GPGPU Code
	GPU Ray Tracing of Triangular Grid Primitives

	Complete Publication List
	Core Publications
	Archiving of Cultural Heritage Images
	Scanning System for Tensile Testing Specimens
	Miscellaneous

