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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Tool condition monitoring is a key component of predictive maintenance in smart manufacturing. Predicting excessive tool wear in machining
processes becomes increasingly difficult if different materials need to be processed. We propose a novel computer vision-based system for saw
blade condition monitoring that is independent of the processed materials and combines deep learning with classic computer vision. Our approach
allows for accurate condition monitoring of blade wear which can further be used for predictive maintenance. Additionally, the system can classify
different defect types such as missing blade teeth, thus preventing the production of scrap parts.
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1. Introduction

The state of a cutting tool is a crucial component in any metal
cutting process since unplanned downtimes in terms of scrap
parts and machine tool breakage are caused by the usage of
worn tools [1]. It is estimated that the fraction of downtime that
is caused solely by tool breakage amounts to 7-20% [2]. Thus,
monitoring the progression of cutting tool wear within the cut-
ting process is required to exchange worn tools in time and con-
sequently avoid unexpected downtime and save costs [3]. Tool
Condition Monitoring (TCM) comprises the monitoring of ma-
chining tools with the help of sensor processing techniques to
reduce the amount of unplanned downtimes due to tool wear or
tool damage using hardware for signal acquisition and software
for signal analysis and interpretation [4]. The typical sequence
of activities in a TCM system comprises sensorial perception
and knowledge acquisition, advanced signal processing and de-
cision making which can be considered as the most integral
stage and usually involves the application of Artificial Intelli-
gence (AI) methodologies [5]. Traditional approaches to TCM
apply so called direct methods (mostly offline) that use vision
sensors, proximity sensors, radioactive sensors etc. or indirect

(online) methods that measure for instance spindle motor cur-
rent, cutting force, vibration or acoustic emission and are used
to infer the tool condition during machining [6].

Research in the field of TCM, especially with respect to in-
direct methods, is quite comprehensive and has been actively
pursued throughout the last decades resulting in a considerable
amount of review papers being published [7, 8]. Although di-
rect methods are capable of capturing actual geometric changes
that are caused by tool wear and are more accurate than indi-
rect methods, they are usually very difficult to implement in
practice, due to the mostly inaccessible cutting area and the
continuous contact between tool and workpiece [3]. Indirect
methods on the contrary have the advantage of being less com-
plicated in terms of the required setup and are more suitable
for practical applications [9]. However, using indirect meth-
ods involves shortcomings that prevent a successful integration
into industrial applications. According to [10], the likelihood
of sensor failure is almost of the same order of magnitude as
machinery failure which in turn requires sensor redundancy to
detect such errors. Due to the fact that indirect methods use a
plethora of different sensor signals, the system itself must be
monitored continuously. Additionally, such methods are devel-
oped under laboratory conditions and are thus often not suitable
for real world industrial applications due to the assumption of
controlled conditions i.e. low susceptibility to noise and uncer-2212-8271© 2021 The Authors. Published by Elsevier B.V.
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tainty [11]. Other limiting aspects can be considered in the ap-
plication of traditional AI methods such as shallow neural net-
works used for decision making support regarding maintenance
activities, since they require data for all classes of conditions,
provide valid answers only within training range and have to
be retrained each time when values move outside the training
range due to environmental changes [10]. Limiting factors with
respect to the sensors used in indirect methods can be found
in [12]. With the recent advances in deep learning, the capabil-
ities in many areas of AI such as image processing and speech
recognition experienced a considerable improvement compared
to the performance of more traditional AI methods. This direc-
tion has been actively researched mainly in the field of indirect
methods for TCM [13, 14, 6]. However, using deep learning
the application of online direct methods using vision sensors,
i.e. cameras to monitor tool wear becomes more interesting, es-
pecially when there is a process that does not rely on the ex-
istence of a cooling lubricant that would prevent a camera to
clearly identify the tool while processing [9]. In recent years re-
searchers started to adress the application of computer vision to
monitor tool wear more intense, see [12] for a review of differ-
ent methods. Dutta et al. [15] proposed a method to predict pro-
gressive tool wear using extracted features from turned surface
images via gray level co-occurrence matrix (GLCM), Voronoi
Tesselation (VT) and discrete wavelet transform (DWT). Ong
et al. [16] used a wavelet neural network (WNN) for tool wear
monitoring in CNC end milling process of high speed steel.
Sun and Yeh [17] developed an on-machine turning tool insert
condition monitoring system that can identify four external tool
insert conditions, namely fracture, built-up edge, chipping and
flank wear. However, none of the related work uses deep learn-
ing to improve the performance of the computer vision based
systems.

The presented paper can be considered as a follow up to the
indirect method proposed by Busse et al. [18], in which the
authors used a nonlinear autoregressive with exogenous inputs
(NARX) neural network [19] to predict bandsaw failure based
on sensor values. However, the system developed by Busse et al.
is dependent on the material that is being processed on the band
saw, since the sensor values strongly differ given the character-
istics of the material. In modern industrial applications, band-
sawing is the primary process for the preparation of raw mate-
rials [20] and thus processing various kinds of material would
require specific failure curves for each of the materials being
processed, which results in an unfeasable requirement for prac-
tical purposes. The main objective of the proposed approach is
to combine traditional methods in computer vision with recent
advances in deep learning to allow for more sophisticated saw
blade condition monitoring that is independent of the material
being processed and thus requires less data and training efforts
leading to increased flexibility for industrial applications. In or-
der to achieve this objective, we follow a twofold approach to
design our system: In the first step, we employ the deep neural
network architecture YOLOv3 [21], which is an extension of
the YOLO network presented in [22], to be able to detect blade
teeth. The second step embodies the detection of the backside
of the saw blade, which is accomplished by using a Sobel filter

Fig. 1: Examplary result image of the detections on an image from the test-set
used in the experiments. The red triangle markers show the detections of the
saw blade teeth. The red line highlights the saw blade back line.

and the random sample consensus (RANSAC) algorithm [23].
Given the respective blade teeth and the backside of the saw
band we can determine the height of the saw blade itself by
calculating the perpendicular distance between these instances.
The approach can be run online during active machining using a
short exposure time on the camera to limit motion blur. Figure 1
illustrates the height measurements on a test image retrieved by
applying the aforementioned twofold approach.

The remainder of the paper is organized as follows: In Sec-
tion 2 we present the methodology of our computer vision-
based system for saw blade condition monitoring. Conse-
quently, Section 3 includes the experiments and validation of
our approach. The conclusion and discussion of future research
form Section 4 of our paper.

2. Methodology

In our study, we focus on the popular Kasto SBA2 model
as our test-bed. An example of the typical flank wear observed
on the blade of this saw is depicted in Figure 2. As the aver-
age total height difference between an unused blade and a worn
saw blade that needs to be exchanged only amounts to about
0.59 mm in our experiments, the optical measurements need to
be very precise to produce usable results. The overall method-
ology is depicted in Figure 3. The computation pipeline can be
divided into the detection of the saw blade back and the saw
blade teeth. Both can be computed in parallel to save compu-
tation time. The proposed system is implemented in Python.
YOLOv3 is implemented using the deep learning library Keras
[24], while the image pre-processing and Sobel filter operations
are implemented using OpenCV [25].

(a) Unused saw blade tooth (b) Worn saw blade tooth

Fig. 2: Examples for the visual appearance of saw blade teeth on an unused and
a worn blade. The height difference between (a) and (b) is 0.59 mm.
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Fig. 3: Overview of the pipeline used for estimating the Health Index of the saw blade.

2.1. Detection of blade teeth

The saw blade teeth positions within the image are deter-
mined in two stages. First, we utilize an object detection Con-
volutional Neural Network (CNN) for detecting the saw blade
teeth and providing an initial estimate for their positions. Sec-
ond, we apply sub-pixel refinement to increase the accuracy of
the position estimates.

Initial positioning. We utilize the popular YOLOv3 CNN ar-
chitecture [21, 22] for the initial position estimation of the saw
blade teeth. As YOLOv3 was originally designed for object de-
tection with bounding boxes, we slightly simplify the architec-
ture for the keypoint detection usecase on hand. As we do not
require the detector to be scale invariant, we only use the last
feature layer for prediction. Further, we do not require informa-
tion about the spatial extent of the saw blade teeth. Thus, we
fix the size of the anchor boxes as well as the predicted bound-
ing boxes to a size of 11 × 11 pixels with the blade tips in the
very center. To prevent overfitting as well as to improve over-
all performance, data augmentation is used. Random Cropping,
Left-Right Flip, Brightness as well as Salt and Pepper Noise are
applied with a probability of p = 0.5 during training. The data

(a) Close estimation (b) Far off estimation (c) Left correction (d) Right correction

Fig. 4: Four examples for sub-optimal annotations (red) in comparison to sub
pixel accuracy (blue). On average the distance between the red center location
and blue locations is 1.55 px in our dataset. The best case is close to zero,
limited by the nature of subpixels and manual labeling. The worst case is 8.25
px. The lines in (a) show two exemplary tangents which are used to calculate
the sub-pixel position.

augmentation is applied online during training. Hence, it does
not affect the number of available training images, but rather
randomly alters the existing images in every epoch.

Sub-pixel refinement. Our algorithm’s blade tooth position ap-
proximation is trained on manually generated annotations.
These manual annotations, as illustrated in Figure 4, may be
subject to bias due to individual and inconsistent annotations
on greyscale gradients that represent an edge [26]. This is es-
pecially the case for multiple annotators. Additionally, it is not
feasible to train a network with every possible ground truth,
which leads to non-perfect predictions in unknown data. In or-
der to make results explainable and more robust, the algorithm
executes an additional refinement step for every single tooth.
Therefore, we use the sub-pixel approximation of Förstner and
Gülch [27], which uses a search window W centered around an
initial guess to refine a point p sensitive to edges in the tex-
ture of the given image I. The whole optimization is shown in
Equation (1).

p̂ = arg min
p

∫
q∈W

(
∇IT

q (p − q)
)2

dq (1)

This approach finds the desired optimal two-dimensional cor-
ner point p̂. To achieve this it optimizes p such that each tan-
gent line ∇IT

q (p − q) = 0 at q within a search window W of 5
pixel radius mutually intersects and is orthogonal to the image
gradient at q. The resulting point p̂ is the point with the minimal
distance to all intersections of the weighted tangents.

A simplified example with two tangents can be seen in Fig-
ure 4a. The tangent line is defined by a line that goes through
p and q ∈ W. The transposed image gradient ∇IT

q multiplied by
the vector p − q effectively forms a dot product, which weights
the tangent lines laying on the image gradient (i.e. being or-
thogonal to the gradient direction). Due to this weighting, tan-

3
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gent lines that correspond to the image texture resulting in the
corner point are represented stronger in the optimization. This
combines the strengths and weaknesses from both approaches
most importantly the very fast global initial saw tooth localiza-
tion and the precise reproduceable local sub-pixel refinement.
Additionally, this procedure eliminates human labeling bias and
corrects slightly off predictions from the network.

2.2. Detection of blade back

The position and angle of the saw blade back edge are de-
termined using classic computer vision methods. First, an im-
age crop is extracted that focusses on the transition between
the blade and the image background as the primary contrast in
the image. A gaussian blur is consequently applied to the crop
to reduce noise and unnecessary detail on the blade material.
Next, a Sobel operator [28] with a kernel size of 5 × 5 is uti-
lized to measure horizontal and vertical gradients in the image.
Using the resulting gradients Gx and Gy, the corresponding an-
gles are computer as Θ = arctan 2

(
Gx,Gy

)
. The gradient angle

and magnitude are thresholded to identify candidate pixels that
are likely positioned on the the edge of the saw blade back. Fi-
nally, the RANSAC algorithm [23] is used for a robust linear
regression through the identified edge pixels.

2.3. 3D height measurement

Transformation to real-world coordinates. After detecting the
saw blade teeth positions as well as the saw blade back edge
in the image, the pixel-level coordinates ui, vi are transformed
to real-world 3D coordinates xi, yi, zi to be able to measure the
remaining height of the saw blade teeth in milimeters. The pro-
jection of the real-world coordinates on the undistorted image
plane is described using a pinhole camera model where fx, fy
and cx, cy describe the focal length and principal point coordi-
nates respectively. As the plane in which the saw blade moves is
mounted parallel to the camera sensor in a fixed distance zcam,
one can obtain the real-world coordinates as

xi =
(ui − cx) zcam

fx
, yi =

(
vi − cy

)
zcam

fy
, zi = zcam. (2)

Height measurement. We define the relevant height of a saw
blade teeth as the shortest distance between a saw blade teeth
described by its coordinates xi, yi, zcam and the saw blade back
line described by two points P1, P2 that lie on it. Thus, the dis-
tance is given by a line that is perpendicular to the saw blade
back and intersects the saw blade teeth coordinates. The esti-
mated height ĥi of saw blade tooth i is therefore defined as

ĥi (P1, P2, (xi, yi)) =
|(y2 − y1) xi − (x2 − x1) yi + x2y1 − y2x1|√

(y2 − y1)2 + (x2 − x1)2
.

(3)

As the 3D transformation depends on the accuracy of the intrin-
sic camera calibration as well as the manually measured dis-
tance between the camera and the saw blade zcam, there may be
measurement errors that influence the blade height estimation
ĥi. Using the assumption that the influence of these measure-
ment errors on the estimation is linear, we fit a linear regression
hi = β0 + β1 ∗ ĥi on the estimated values using the training set
to correct for scale and offset errors. As the saw blade wear will
not affect all teeth uniformly, we measure multiple saw blade
teeth to accurately estimate the current condition of the blade.
The individual measurements of m teeth are aggregated by cal-
culating the mean height h̄ = 1

m
∑m

i=0 hi.

2.4. Health index estimation and further model capabilities

The final step of the computational pipeline is to compute
the Health Index (HI) of the saw blade in per-cent. This is done
by linear interpolation of the current mean saw blade height h̄t

between the mean height of an unused blade h̄new (100%) and
the minimum usable height h̄def (0%), HIt = 100% · h̄t−h̄def

h̄new−h̄def
.

While the estimation of the blade flank wear is the primary ob-
jective of this study, it is possible to use the proposed model
to detect other abnormalities such as broken teeth which lead
to quality degradation and even defects on the machine itself.
As the total difference in height between unused and fully worn
blades only amounts to 0.59 mm, broken teeth can easily be
detected by using a threshold hthresh << h̄def on the estimated
blade height.

3. Experiments

The experiments for this study were conducted using the in-
dustrial bandsaw depicted in Figure 5. To validate the proposed
methodology, five different levels of wear are physically mea-
sured and consequently compared to the wear levels estimated
by the condition monitoring system. Thus, a given saw blade
was measured in its unused state to define h̄new, its defect state
h̄def as well as three states in between the two extremes. The
minimum usable height of a blade h̄def was determined by ex-
periments using 50 mm square aluminum bars as raw material.

Fig. 5: Kasto SBA2 bandsaw used for the experiments. The industrial camera
FLIR BFS-U3-27S5M-C with dimensions 29x29x30 mm is mounted on the
back side of the saw blade, which allows to capture and process images during
machining. The exposure time is set to 20µs to limit motion blur.
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gent lines that correspond to the image texture resulting in the
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(
Gx,Gy

)
. The gradient angle
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xi =
(ui − cx) zcam

fx
, yi =

(
vi − cy

)
zcam

fy
, zi = zcam. (2)
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|(y2 − y1) xi − (x2 − x1) yi + x2y1 − y2x1|√

(y2 − y1)2 + (x2 − x1)2
.

(3)
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State True blade condition Predicted blade condition Error Confidence Interval (95%)
HIGT

t (%) hGT
t (mm) H̄It (%) h̄t (mm) σH̄It

(%) σh̄t
(mm) H̄It (%) h̄t (mm)

0 - New blade 100.00 27.33 99.56 27.33 0.49 0.0029 [−0.70, 1.41] [−0.0041, 0.0083]
1 62.71 27.11 59.38 27.09 0.95 0.0056 [−4.53,−0.56] [−0.0267,−0.0033]
2 42.38 26.99 46.45 27.02 0.66 0.0039 [3.43, 6.29] [0.0202, 0.0371]
3 18.64 26.85 20.42 26.87 1.51 0.0089 [0.67, 5.80] [−0.0041, 0.0342]

4 - Worn blade 0.00 26.74 0.00 26.74 2.19 0.0129 [−3.91, 5.49] [−0.0231, 0.0324]

Table 1: Experiment results on the hold-out test set for five increasing levels of wear. The condition estimates are computed using a sample size of n = 15 images
each. Scale and offset parameters are calibrated on a separate validation set.

As the definition of the minimum usable state is qualitative and
difficult to define absolute, it is a parameter that must be chosen
according to the quality requirements of the respective process
step and product. To build a dataset for training and evaluation
of the proposed method, 50 images are captured of every state,
resulting in a dataset of 250 images. The images are captured
from a fixed distance zcam parallel to the saw blade. Further, the
blade height was measured at 10 different positions across the
band and consequently averaged for every state to define accu-
rate ground truth labels for the model. The generated dataset is
split into a training set using 30 images per state, a validation
set using 5 images per state as well as a test set using 15 im-
ages per state. Consequently, the datasets are manually labeled
with keypoint annotations at the blade tooth tips for training and
evaluation of the YOLOv3 detections. The YOLOv3 model is
trained for a total of 80 epochs using the training set with batch
size 8 and at an initial learning rate of 0.006 which is decreased
to 0.0005 after 50 epochs. The hyperparameters, including the
bounding box size, batch size, learning rate schedule, and epoch
count, are tuned using the validation set.

The results of the initial blade teeth detection using YOLOv3
are listed in Table 2. The trained model is able to accurately
detect the blade teeth, with a Mean Absolute Error (MAE) of
1.3466 px on the test set for all detections that are matched to
the ground truth with an euclidian error ≤ 3px (93%). To ana-
lyze the detection performance, we further report the Average
Precision (AP), using an euclidian error ≤ 3px as a matching
criterion for true positives. We employ the euclidian error as a
matching criterion as this better represents the usecase com-
pared to intersection over union matching. Further, it is ob-
servable that the performance difference between test set and
training set is rather small, indicating that there is no signficant
overfitting problem present. As the variations in the blade and
consequently the images thereof are very small, overfitting is
not a significant problem in this setting, especially when com-
pared to other application areas with much higher intra-class
variations such as autonomous driving. The quantitative exper-

Split MAEd≤3px (px) AP≤3px (%)
Training Set 1.2609 88.7

Validation Set 1.2894 88.1
Test Set 1.3466 88.5

Table 2: YOLOv3 detection results on the dataset splits, averaged over all levels
of wear.

iment results of the complete condition monitoring pipeline are
listed in Table 1. The experiments have been conducted using a
AMD Ryzen 9 3900X processor. The processing time per im-
age amounts to ∼397ms using a GeForce RTX 2080Ti GPU
and ∼6,12s using only the CPU. Taking into account that the
saw blade wears slowly, the processing time of our algorithm is
thus considered sufficiently fast for being used in an industrial
application. Notably, the model is able to estimate the blade
flank wear at all five wear states within sub-millimeter accu-
racy. To provide a practical evaluation of the performance as
well as statistical guarantees, we further analyze the distribu-
tion of the measurement errors of the model on the test set in
Table 1. To test the H0 hypothesis that the regression errors fol-
low a normal distribution, a normality test based on D’Agostino
and Pearson [29] is conducted. The resulting p-value p = 0.42
well exceeds the significance level α = 0.05, thus H0 cannot be
rejected. Interestingly, the analysis shows a trend of increasing
standard error of the mean of the Health Index estimate σH̄It

for
increasing levels of wear. This result is to be expected as not
all flanks will wear uniformly while little variance is expected
for an unused blade. Finally, we provide the confidence inter-
vals for the regression error concerning the Health Index H̄I as
well as the blade height h̄t for each state which is estimated
using a sample size of n = 15 respectively. Similarly to σH̄It

,
the width of the confidence intervals increases with increasing
wear as well. While this accuracy is already usable for condi-
tion estimation, the confidence interval can be further tightened
by increasing the sample size n used for estimation if necessary
for the respective usecase. In order to facilitate the interaction
between the system and the machine operators, a web interface
has been developed, as shown in Figure 6 on the next page, that
displays the HI of the saw blade on a screen, during machining.

4. Conclusion

In this paper, we proposed a novel online direct TCM
method for robust condition monitoring of saw blade flank
wear using computer vision and deep learning. The processing
pipeline of the proposed method estimates the position and an-
gle of the blade back via classic computer vision. The blade
teeth in turn are initially detected by deep learning and fur-
ther refined to sub-pixel accuracy. We combine both to a 3D
measurement of the blade height which is used to compute
the Health Index of the blade. Our experiments show, that the
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Fig. 6: Web interface based on which the machine operator can interact with the
system. The health indicator as well as the image and corresponding detections
are visualized. The degradation can also be plotted over time in a separate view.

proposed method is able to accurately estimate the blade wear
while being robust against changes in material characteristics
and sensor drift by design. The proposed method further re-
quires only little training data, which renders the application
in a productive environment feasible with low initial invest-
ment. While our approach already provides usable condition
estimates, there are several possibilities for future work. Most
importantly, flank height decrease might not be the only symp-
tom of wear on a saw blade. Further experiments are neces-
sary to determine if there are other important types of wear that
are of interest for a condition monitoring system. Lastly, the
classification and regression capabilities of the CNN detection
framework can be exploited further, possibly allowing for direct
Health Index prediction.
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