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Abstract
Neural radiance fields (NeRFs) have revolutionized novel view synthesis, leading to an unprecedented level of realism in
rendered images. However, the reconstruction quality of NeRFs suffers significantly from out-of-focus regions in the input
images. We propose NeRF-FF, a plug-in strategy that estimates image masks based on Focus Frustums (FFs), i.e., the visible
volume in the scene space that is in-focus. NeRF-FF enables a subsequently trained NeRF model to omit out-of-focus
image regions during the training process. Existing methods to mitigate the effects of defocus blurred input images often
leverage dynamic ray generation. This makes them incompatible with the static ray assumptions employed by runtime-
performance-optimized NeRF variants, such as Instant-NGP, leading to high training times. Our experiments show that
NeRF-FF outperforms state-of-the-art approaches regarding training time by two orders of magnitude—reducing it to under
1min on end-consumer hardware—while maintaining comparable visual quality.

Keywords Novel View Synthesis · Neural Radiance Fields · Image Restoration

1 Introduction

The reconstruction and subsequent novel view synthesis
based on 2D input images of complex 3D scenes is a long-
standing research problem in computer vision. Recently, the
introduction of neural radiance fields (NeRFs) [30] has led
to enormous progress regarding the rendering of photoreal-
istic views from multi-view images. NeRFs predict radiance
and volume density from a 3D spatial location and viewing
direction using a multilayer perceptron (MLP). The outputs
of thisMLP can be rendered by established volume rendering
techniques [15].

Most NeRF variants are restricted to well-defined captur-
ing environments, with noise-free images of a static scene
with known camera parameters. Therefore, most NeRF vari-
ants produce inferior rendering results when the input images
suffer fromdifferent types of blur. Themost prominent exam-
ples are motion blur, where the camera changes position
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during exposure time leading to superposition of multiple
views, and defocus blur that is caused by a suboptimal
choice of camera aperture. There aremultiple approaches that
address the issue of motion blur [8, 21, 40, 53], defocus blur
[59] or both [20, 26, 37] in the context of NeRFs. However,
while there is previous work that has shown great progress
in accelerating NeRF training and rendering times [4, 10,
31, 48], most of the existing blur-resistant contributions do
not leverage the potential of these accelerations. This can be
attributed to the fact that most of the blur-resistant strategies
rely on dynamically generated rays, while the accelerated
NeRF methods leverage explicit density volume representa-
tions to prune low density voxels. These strategies are based
on the assumption of static rays.

In this paper, we propose NeRF-FF, a novel plug-in
method that can be combined with a multitude of NeRF
andNeRF-like novel view synthesis strategies, which signifi-
cantly improves the rendering quality based on blurred input
images. NeRF-FF calculates image masks that contain in-
focus or only slightly out-of-focus regions of the input images
that lead to a beneficial trade-off between image quality and
scene coverage. To achieve this, NeRF-FF first identifies
regions that are in-focus by applying the discrete Laplace
operator, which detects sharp edges that are predominantly
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prevalent in in-focus regions. These feature points are lever-
aged to estimate the visible and in-focus volume for each
image in the 3D scene space using depth maps from a NeRF,
which was trained before. This volume has the shape of a
pyramid cropped by a near and far plane. We refer to it as
Focus Frustum.

These Focus Frustums are then refined by expanding their
near and far plane such that each point in the relevant scene
geometry is part of at least a certain percentage of the Focus
Frustums. The projection of dense scene points encompassed
by the Focus Frustums into the respective image space pro-
vides image masks indicating the pixels, a subsequent NeRF
model can be trained on, to obtain unblurred novel views.
Thus, we provide a trade-off between the reconstruction of
the complete scene geometry and usage of optimal, i.e., in-
focus or only slightly out-of-focus, views.

Our experiments show that the resulting image quality
of NeRF-FF is comparable to state-of-the-art strategies. At
the same time, NeRF-FF can be used in combination with
accelerated NeRF variants like Instant-NGP [31], which is
not easily integrable with state-of-the-art methods like PDRF
[37]. The proposed combination of NeRF-FF and Instant-
NGP [31] outperforms the state of the art by two orders of
magnitude regarding training time, bringing it down to under
1min (see Fig. 1).

In summary, this paper offers the following contributions:

– We propose NeRF-FF, a plug-in strategy that estimates
image masks based on Focus Frustums (FFs), i.e., the
visible volume in scene space that is in-focus, that allow
a subsequent NeRF model to omit out-of-focus image
regions during training, including a reasonable choice of
hyperparameters.

– We provide a quantitative analysis showing that the
combination of NeRF-FF with Instant-NGP [31] yields
resulting novel views that are comparable to the state of
the art in qualitywhile reducing the required computation
time by two orders of magnitude. This results in end-to-
end runtimes under 1min on end-consumer hardware.

2 Related work

Neural RadianceFields (NeRFs).NeRFs [30]model the radi-
ance of a static 3D scene as implicit representation, which
can be used by classical volume rendering techniques [15]
to perform photorealistic novel view synthesis—the render-
ing of an unknown viewing direction based on a set of input
images. This approach has gained popularity in recent years,
leading to many follow-up works that have extended NeRF
capturing capabilities. There are NeRF variants that can han-
dle dynamic scenes [22, 35, 36, 39, 51, 65], make NeRFs
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Fig. 1 NeRF-FF in combination with Instant-NGP (NeRF-FF+ iNGP)
accelerates training times on blurry input images in comparisonwith the
state of the art by twoorders ofmagnitude,while significantly improving
Instant-NGP’s novel view synthesis capabilities on these inputs. Results
obtained from defocus real dataset byMa et al. [26] using an RTX 3090

robust against the challenges of in-the-wild image captur-
ing [27, 29, 43, 49, 54, 55], reduce the required input image
count [9, 33, 41, 62] or enable trainingwithout known camera
poses [23, 28, 56]. Other work has addressed the robustness
of NeRFs against the influence of different types of noise,
like exposure noise [11, 14, 29], illumination changes [6, 27,
67] and aliasing [1, 2]. Some publications attempt to over-
come the static nature of NeRFs regarding baked lighting and
rigid scene geometry by applying them to generative models
[34, 44], enabling dynamic relighting of the captured scenes
[32, 46, 54, 64, 67], using them for animatable human avatar
generation [13, 38, 47, 68] and through approaches that allow
scene editing [5, 12, 19, 24, 34, 60, 63]. To improve the high
computation times of the initial NeRF approach, strategies
to reduce training [4, 10, 31, 48, 52, 61] and rendering [7,
17, 25, 42] time have been proposed, making NeRFs more
accessible to end-consumer hardware.

NeRFs from blurred images. In recent years, the challenge of
applying NeRFs to blurry input images has been researched
extensively. The resulting publications either address out-
of-focus [59] or motion blurred [8, 21, 40, 53] images in
particular, or blurry images in general [20, 26, 37]. Follow-
ing the tradition of single image deblurring, Deblur-NeRF
[26] estimates a spatially varying blurring kernel by using
a deformable sparse kernel module that models the phys-
ical blurring process. By taking the translation of the ray
origin into account, they extend this 2D kernel estimate to
3D space. DP-NeRF [20] extends this approach by modeling
a prior for blurring in order to guarantee blur kernel consis-
tency throughout the image. PDRF [37] takes scene geometry
into account by realizing a two-step approach that leverages
a 2D blur estimate computed on a coarse set of rays and later
incorporates 3D features into it. DoF-NeRF [59] physically
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Fig. 2 The NeRF-FF pipeline. NeRF-FF improves the rendering qual-
ity of NeRFs for training data that suffers from a defocus aberration (a).
First, NeRF-FF estimates Focus Frustums (b), the view frustum sub-
volumes of each training view containing only in-focus image regions.
For this, we combine Laplacian features indicating in-focus points with
their corresponding depths, which is obtained using an arbitrary dense
reconstruction strategy—in our case Instant-NGP. The Focus Frustums

are then refined by iteratively growing their near and far planes until
the entire scene geometry is adequately captured (c). Finally, NeRF-FF
leverages the refined Focus Frustums to generate a binary mask for each
training image that segments in-focus from out-of-focus image regions
(d). Themasks are used as additional training input data, allowingNeRF
models to omit out-of-focus regions during training and, thereby, learn
an in-focus representation of the scene (e)

models the aperture of the camera lens as an additional MLP
that can be added to a NeRF framework.

These strategies, however, require dynamically generated
rays. In contrast to that, highly performance-optimizedNeRF
variants, like Instant-NGP [31], Plenoxels [10] and Ten-
sorf [4], explicitly model the density volume to accelerate
the training process by efficient pruning, relying on static
rays. Therefore, the above-mentioned approaches for NeRF
synthesis on blurred inputs are not compatible with these
performance-optimized NeRF variants, leading to training
times of multiple hours up to nearly one day on high-end
end-consumer hardware.

3 NeRF-FF

Most state-of-the-art approaches jointly estimate a spatially
varying blur kernel alongside with the scene geometry and
radiance. In contrast to that, NeRF-FF generates masks for
the input images, such that a subsequently applied NeRF
variant—in our case Instant-NGP [31]—trains on in-focus

regions only. In a first step, NeRF-FF identifies sharp edges,
which indicate in-focus regions in the blurry input images,
using the discrete Laplace operator (Sect. 3.2). Depth maps
generated by a preliminary NeRF model (see Sect. 3.1) are
sampled at the identified feature points to estimate the focus
depth and range, i.e., the depth of field (DoF), using statis-
tical analysis on a per-image basis. This provides an initial
estimate for our Focus Frustums, which encompass visible
in-focus volumes in scene space (Sect. 3.3). These frustums
are iteratively expanded to increase coverage of the scene,
leading to a robust training process and a fully reconstructed
scene geometry (Sect. 3.4), while keeping the added vol-
umes that contain out-of-focus regions minimal. The masks
for subsequent training are computed by reprojecting the
geometry inside of each Focus Frustum into its respective
2D image space, leading to a training set that only contains
pixels which are mostly influenced by the density of spatial
points that are encompassed by the respective Focus Frustum
(Sect. 3.5). The pipeline of NeRF-FF is illustrated in Fig. 2.
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3.1 Initial depth estimates

Defocus blur manifests depending on the distance of sur-
faces from the camera plane. In order to distinguish in-focus
regions from out-of-focus regions, our approach leverages
spatial information from the scene space. Therefore, a
mapping between points in 2D image space and their cor-
responding points in scene space is required. We train a
preliminary Instant-NGP [31] instance on the blurry input
images i with the color information Ii ∈ [0, 255]3×W×H , to
obtain per view depthmaps Di ∈ R

W×H .We notate the color
information of a pixel that is part of image i and has posi-
tion (x, y) as Ii (x, y) and call that pixel’s depth Di (x, y).
The depth maps Di ∈ R

W×H , that are later used for ini-
tial Focus Frustum estimation (Fig. 2b) and mask generation
(Fig. 2d), are derived from the rays that are deployed dur-
ing the volume rendering process of Instant-NGP inference.
Even though the reconstructed appearance of the preliminary
Instant-NGP model suffers from the blurred image inputs,
the estimated scene geometry is adequate for the purpose of
generating sufficiently accurate depth maps. Note, that any
approach which reliably estimates a dense depth map from
the blurry input images can be applied in this stage.

3.2 Discrete Laplace operator as DoF indicator

In-focus image regions generally contain sharp edges, be it
through textured surfaces or object boundaries, which are
greatly reduced by defocus blur [3, 16]. These edges can
be detected using the discrete Laplace operator �. Pixels
Ii (x, y), that exhibit high values after applying the discrete
Laplace operator on grayscaled input images, indicate sharp
edges and are therefore used as indicators for in-focus image
regions—modeled as a set of indicator pixels Pi per image
Ii with

Pi = {(x, y)|�(Ii )(x, y) > τ } , (1)

where �(Ii )(x, y) denotes the value of a pixel Ii (x, y) after
applying the discrete Laplace to the grayscaled version of
Ii and τ denotes a threshold for the results of the discrete
Laplace operator that functions as a hyperparameter for
NeRF-FF. A suitable value range for τ is experimentally
identified in Sect. 4.2.

3.3 Initial Focus Frustum estimation

Based on the focus indicator pixels Pi and the correspond-
ing depth maps Di , we can compute the near and far planes
that are parallel to the image plane and in between which
the in-focus regions are located. We call the volume that lies
between these planes in the respective camera view frustum
Focus Frustum. The Focus Frustum represents the visible in-

focus volume in the scene space for the corresponding image.
Sharp edges often occur on object boundaries, which exhibit
unstable behavior regarding their associated depth, depend-
ing on whether the depth of the foreground or background
object is considered. These regions are vulnerable to even
slight inaccuracies in the geometry estimation of the prelim-
inaryNeRFmodel. Therefore, it is likely that the sets of focus
indicators Pi contain pixels that correspond to out-of-focus
regions.

To mitigate the influence of these erroneous focus indica-
tors, we compute the depths of the near and far planes ni , fi
of the Focus Frustum FFi based on the depth distribution of
the focus indicator pixels:

ni = M − σM (P<
i ) (2)

fi = M + σM (P>
i ) (3)

whereM is themedian of the depth values of the focus indica-
tor points in Pi according to the depthmap Di ,σμ(X)denotes
the standard deviation of the elements in set X in relation to
μ, and P<

i (P>
i ) is the subset of elements in Pi with a cor-

responding depth smaller (greater) than M . This follows the
intuition that the depth of in-focus points in imageswith defo-
cus blur follows a normal distribution. The probability of a
point being in-focus is highest in the center of the distribution
and decreases for closer and further points.

Based on these near and far planes, our initial Focus Frus-
tums FFi are defined as

FFi = {p ∈ R
3| p · vi ∈ [ni , fi ] ∧ Ki [Ri |ti ]p ∈ Ii }, (4)

wherevi denotes the forward facingvector of the camera pose
that captured image i in world coordinates, Ki denotes the
internal and [Ri |ti ] denotes the external camera parameters of
that camera. The first term of Eq.4 signifies the depth of the
corresponding volume lying between the near and far plane
defined by ni , fi , while the second term defines the points’
localization within the view frustum, i.e., visible volume in
scene space, for the camera view corresponding to image i .

Figure2b illustrates the process of estimating Focus Frus-
tums based on the focus indicator points Pi , the depth maps
Di and the corresponding camera views.

3.4 Focus Frustum refinement

Our approach provides image masks that regulate which
image regions a subsequent NeRF model is trained on. The
Focus Frustums dictate which depth ranges are considered
for the generation of these masks by omitting pixels that
get their color mainly from spatial positions outside of the
Focus Frustum. Therefore, a low coverage of the scene geom-
etry by the Focus Frustums leads to sparse inputs for these
regions. Most NeRF variants suffer from significant quality
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loss for such sparse inputs. A low coverage of the scene vol-
ume can be caused by an insufficient amount of Laplacian
features in in-focus image regions, e.g., due to textureless
surfaces, or spatial positions that are in-focus in only a few
or no images. To mitigate this issue, we iteratively refine the
Focus Frustums by expanding their DoF, i.e., the distance
between their near and far plane. For a set S of randomly
sampled points in scene space with high optical density in
the preliminary NeRF—indicating this scene space is occu-
pied by relevant scene geometry—we examine the amount
of Focus Frustums they are encompassed by (see Eq.4). We
refine thedepthsni , fi of the near and far plane for eachFocus
Frustum FFi . We notate the updated near and far plane of
the resulting Focus Frustums RFFi as n̂i , f̂i . The refined near
and far planes’ depths are chosen, such that the accumulated
change in depth R (Eq. 5) is minimal, while any spatial posi-
tion p ∈ S is part of at least a certain fraction � of the refined
Focus Frustums.

� is a hyperparameter of NeRF-FF that trades off scene
coverage against reconstruction quality of regions that are
depicted in the Focus Frustums. We show the influence of
different values of � in Sect. 4.2.

For the calculation of R, we only consider Focus Frus-
tums with a corresponding view frustum that encompasses
the respective spatial position p, i.e., only Focus Frustums
are considered that could potentially encompass p if an arbi-
trarily large change of the near or far plane is performed.

R =
∑

i

((ni − n̂i ) + (f̂i − fi )) (5)

Figure2c illustrates the refined Focus Frustums obtained
in the previous pipeline step. They were expanded to encom-
pass relevant scene geometry that was not sufficiently cap-
tured by the initial estimates.

3.5 Mask generation

Given the refined Focus Frustums RFFi , we calculate cor-
responding image masks Maski with addressable pixels
Maski (x, y) at positions (x, y) that discriminate positions
in image space depicting structures within the Focus Frus-
tum against ones that depict structures on the outside. To
generate these masks, we leverage the depth values from the
depth maps Di (Sect. 3.1). A pixel is activated in an image
mask Maski if its corresponding depth value is part of the
refined Focus Frustum’s focus range [n̂i , f̂i ]:

Maski (x, y) =
{
1, if Di (x, y) ∈ [n̂i , f̂i ]
0, otherwise.

(6)

Note that since all pixels in the depth map are visible in
their corresponding image, it is not necessary to consider the

other boundaries of the Focus Frustum. A subsequent NeRF
model is trained on the blurry input images only considering
pixels Ii (x, y) with Maski (x, y) = 1. This is illustrated in
Fig. 2e. Due to the general nature of the results of NeRF-FF
in the form of thesemasks, NeRF-FF is compatiblewithmost
NeRF variants.

4 Experiments

4.1 Implementation details

Training. NeRF-FF provides image masks for a subsequent
training process with a NeRF variant. In our experiments, we
evaluate NeRF-FF in combination with Instant-NGP (NeRF-
FF+ iNGP). Therefore, we employ Instant-NGP[31] as a
preliminary and a subsequent NeRFmodel. Note that current
state-of-the-art methods are not easily usable in combina-
tionwith Instant-NGP because Instant-NGP employs custom
CUDA kernels, which are hard to integrate with existing
strategies [37]. The preliminary NeRF is trained for 2,000
iterations and the subsequent NeRF for 4,000 iterations on a
single NVIDIA RTX3090. We use the standard Instant-NGP
training parameters.

Datasets and evaluation.
We perform our experiments on the dataset introduced

by Ma et al. [26], which provides 5 synthetic and 10 real-
world scenes containing images suffering from defocus blur.
Furthermore, we present the capabilities of NeRF-FF on the
dataset presented by Wu et al. [59], which contains 6 real-
world scenes.

For the synthetic scenes of Ma et al. [26], we train one
model per scene on the training split. We compare the syn-
thesized novel views for the views in the evaluation splits that
are renderedusing thatmodelwith the respective ground truth
image. For our analysis, we consider themedian of the results
per scene. Each real-world scene of Ma et al. [26] contains a
set of in-focus reference images. For each provided reference
image, we train a model on any image in the respective scene
dataset except the examined reference image, comparing the
synthesized image to the reference. For each scene, we report
the median of these results in Table 1. The average results
are reported in Table 3.

For the real-world scenes of Wu et al. [59], a triplet of
images consistingof twoout-of-focus andone in-focus image
is provided per view. Analogous to the evaluation method
of Wu et al., we train a model on the out-of-focus images
from 8

9 of the views and compare the synthesized images of
the remaining 1

9 of scenes to their respective in-focus refer-
ence image. For each scene, we evaluate different splits until
the union of these splits’ evaluation sets contains at least 20
images. Per scene we report the median of these results in
Table 2.
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Fig. 3 Comparison of PSNR and SSIM of NeRF-FF+ iNGP for differ-
ent values of the hyperparameters � and τ

4.2 Hyperparameter optimization and ablation

Our approach relies on a set of hyperparameters (τ , �). The
threshold τ determines which values, that result from the
application of the discrete Laplace operator, are considered
indicators for in-focus regions (see Sect. 3.2). � indicates the
minimum fraction of Focus Frustums each randomly sam-
pled scene point should be encompassed by after the FF
refinement step (Sect. 3.4). This hyperparameter defines the
trade-off between the sharpness of the image regions that are
used for training and coverage of the scene.

In this section, we identify reasonable values for these
parameters by comparing resulting images regarding their
visual quality measured by the peak signal-to-noise ratio
(PSNR) and the structural similarity index (SSIM) [66]. The
experiments are conducted on the blurred scenes from the
real dataset by Ma et al. [26].

To identify a suitable value for �, we consider values
� ∈ [0, 0.1, . . . , 1.0]. Note that � = 0 corresponds to omis-
sion of the Focus Frustum Refinement step and � = 1 is
equal to the training of the subsequent NeRF model without
applying NeRF-FF beforehand. For this experiment, we set
τ = 80, which constitutes an educated guess that turns out to
be optimal for the dataset at hand. Figure3 shows the results
of that evaluation, which indicate that � = 0.4 results in best
performance for PSNR and SSIM, while significantly lower
or higher values for � lead to dramatically decreased per-
formance. Therefore, we chose � = 0.4 for our subsequent
experiments.

Figure3 also shows the results for different values of τ ,
which determines the threshold for the results of the discrete
Laplace operator, employed for identifying DoF indicator
pixels. The experiment is conducted with � = 0.4, since
we have established it as an optimal parameter. The results
indicate that low values of τ lead to bad performance. In
these cases, even weak signals are considered indicators for
in-focus regions, leading to feature points in regions that are
essentially out-of-focus but exhibit strong texture. On the
other hand, high values of τ lead to slowly decreasing perfor-
mance due to the fact that even some sharp edges in in-focus
regions are not considered relevant. The decline for higher
values of τ , however, is small in comparison with low values

of τ . This ismost likely attributed to the fact that the indicator
points are only used for the initial Focus Frustum estimates,
which are then further refined. Smaller initial Focus Frus-
tums, which occur for high values of τ , are then alleviated
by the subsequent Focus Frustum refinement. Following the
results of this experiment, the value of τ = 80 is identi-
fied as the optimal choice for subsequent experiments, as it
maximizes PSNR and SSIM values.

4.3 Novel view synthesis from blurry inputs

Evaluation Methodology. In this section, we summarize the
results of our proposed approach in combinationwith Instant-
NGP (NeRF-FF+ iNGP) on the synthetic and real-world
dataset ofMa et al. [26] and the dataset proposed byWu et al.
[59]. Similar to previous works, we conduct our quantitative
analysis of the examined approaches by comparing the ren-
dered images to their respective reference image regarding
their PSNR, SSIM, and LPIPS. Real-World Comparison.

Table 3 and Figs. 4 and 5 show that our model produces
results that are comparable to SOTA methods. We com-
pare our approach to Deblur-NeRF [26], DP-NeRF [20]
and PDRF [37] that leverage 3D scene information for the
estimation of a blur kernel while simultaneously incorporat-
ing dynamic ray generation. Ma et al. [26] show that these
methods significantly outperform the process of deblurring
single images beforehand by using strategies like KPAC
[45]. Our results show that NeRF-FF+ iNGP leads to images
with PSNR values that are on par with state-of-the-art work.
Regarding SSIM, our approach consistently outperforms
these methods by a fair margin. The results indicate that
Instant-NGP outperforms these methods regarding SSIM as
well, suggesting that these improvements in structural sim-
ilarity can be attributed to the usage of that NeRF variant.
However, our approach trails the visual quality of the ref-
erence deblurring strategies regarding its LPIPS score by a
slight margin. While this indicates inferior quality regarding
human perception, we consider this difference in rendering
quality negligible in comparison with the achieved acceler-

Table 3 Average results for synthetic and real-world scenes from the
dataset by Ma et al. [26]

Synthetic Real-World
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Naive NeRF 25.93 0.7791 0.2303 22.40 0.6661 0.2310

iNGP 25.21 0.8240 0.2164 22.91 0.7945 0.2334

Deblur-NeRF 28.37 0.8527 0.1188 23.47 0.7199 0.1207

DP-NeRF 29.33 0.8713 0.0987 23.67 0.7299 0.1082

PDRF 29.92 0.8483 0.1057 23.84 0.7355 0.1319

NeRF-FF 26.00 0.8474 0.1689 23.70 0.8349 0.1485

Best result is indicated by bold and second-best result by bold-italic
text
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Fig. 4 Qualitative comparison of NeRF-FF + iNGP (ours) with the current state of the art on the real-world defocus dataset of Ma et al. [26]. The
depicted scenes are cake, caps, cupcake, cups and daisy (left to right)

ation. Our approach only requires 45 s of training time on
average, which constitutes an acceleration of two orders of
magnitude in comparison with state-of-the-art methods. This
training time encompasses both the execution of NeRF-FF,
including the preliminary NeRF training, as well as the train-
ing of the Instant-NGP model.

The results of our experiment on the dataset by Wu et
al. [59] are illustrated in Table 2 and Fig. 6. These results
indicate that we consistently produce images of better quality
than DoF-NeRF [59], which physically models defocus blur
by estimating the camera optics—especially the lens—as a
multilayer perceptron. Synthetic Comparison. Table 3 shows
the results of NeRF-FF+ iNGP on the synthetic dataset of
Ma et al. [26]. On this dataset, our approach underperforms in
comparison with the state-of-the-art approaches. An analysis

of the intermediary pipeline stages shows that this is caused
by a low-quality dense reconstruction of the synthetic scenes
leading to depth maps of inferior quality. This is caused by
fully blurred images in the dataset. We discuss this issue
further in Sect. 5.

4.4 Compatibility with other technologies

Table 4 illustrates the results of NeRF-FF when applied in
combination with different volumetric novel view synthesis
strategies. For these experiments, we employed NeRF-FF
in combination with nerfacto—a NeRF variant—and splat-
facto, which is based on 3D Gaussian Splatting [18]. These
strategies are both implemented in Nerfstudio [50].
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cus dataset by Ma et al. [26]. The results indicate that NeRF+ iNGP

achieves comparable visual quality while decreasing the required train-
ing time by at least two orders of magnitude. For ↑ (↓), higher (lower)
values indicate better results

DoF-NeRF NeRF-FF+ iNGP Reference

Fig. 6 Qualitative comparison of DoF-NeRF [59] and NeRF-FF+ iNGP (ours) on the real-world dataset provided by Wu et al. [59] on the scenes
kendo (top), camera (middle) and amiya (bottom)

The applied evaluation strategy is analogous to the one
presented in Sect. 4.1. The results show that applying the
masks generated byNeRF-FF to the input images of nerfacto
and splatfacto produces higher-quality rendering results,
manifesting in improvements in the observed metrics PSNR,
SSIM and LPIPS. The impact of NeRF-FF on the training
duration is negligible. These results further underline that
NeRF-FF is compatible with a multitude of other training
time optimized NeRF or NeRF-like strategies.

5 Limitations and future work

Dense Reconstruction Quality. Low quality of the prelim-
inary NeRF’s dense reconstruction subsequently reduces
the quality of image masks and therefore the overall result
of NeRF-FF and a subsequent NeRF model significantly.
This inferior performance is caused by mismatches between
in-focus indicators and the respective spatial position of
the scene geometry that mainly contributes to this pixel’s
rendered color. These mismatches lead to erroneous depth
estimates of the in-focus indicators, negatively influenc-
ing the initial Focus Frustum estimates. An analysis of
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Table 4 Average results for
real-world scenes from the
dataset by Wu et al. [59] for
other runtime-optimized
methods in combination with
NeRF-FF. For each scene,
nerfacto [50] is trained for 6,000
iterations, splatfacto [18, 50] for
20,000 iterations

PSNR↑ SSIM↑ LPIPS↓ Training (s)

nerfacto 28.33 0.9177 0.0867 94.15

nerfacto+NeRF-FF 28.73 0.9348 0.0485 105.9

splatfacto 28.78 0.9250 0.1017 199.6

splatfacto+NeRF-FF 29.83 0.9417 0.0525 183.3

(a) iNGP (b) NeRF-FF+ iNGP

Fig. 7 Floater artifacts manifesting in the volumetric scene repre-
sentation of Instant-NGP (a). This results in aberrated depth maps,
impurifying the generated in-focus masks. As a result, the floater
remains in the trained model augmented by NeRF-FF (b)

the occurring failure cases during our experiments shows
that low-quality dense reconstructions often occur when the
inputs contain images without in-focus regions which leads
to floater artifacts—scene volume with high estimated opti-
cal density with no counterpart in the ground truth scene—in
the reconstructed scene. Therefore, NeRF-FF is not suited
for datasets containing fully blurred images. Future work
could enhance the robustness of NeRF-FF by automatically
pruning these images from the training dataset.

Floater artifacts. Some results of NeRF-FF+ iNGP suffer
from floater artifacts in the subsequent reconstruction of the
scene based on the masked images (Fig. 7). These floater
artifacts are also prevalent in unmasked Instant-NGPmodels
and reduce image quality depending on the camera position.
Recently, approaches to mitigate the influence of floater arti-
facts either by changing the applied training process [2] or
by removing them after the training process [12, 57, 58] have
been discussed. Integrating these strategies into the training
process could further improve the visual quality of the results.

6 Conclusion

In this paper, we propose NeRF-FF, a plug-in method that
enables the processing of partially defocus blurred input
images for a multitude of NeRF variants. Our method lever-
ages the discreteLaplace operator to detect in-focus regions
in images to estimate in-focus volumes—Focus Frustums
(FF)—on a per-image base. By iteratively expanding these
Focus Frustums, our approach reaches full scene coverage

while maintaining high visual quality. NeRF-FF is compati-
blewith acceleratedNeRFvariants like Instant-NGP, offering
qualitative results comparable to SoTAmethods like Deblur-
NeRF [26], DP-NeRF [20] and PDRF [37] while reducing
training times below 1min on end-consumer hardware. This
corresponds to a relative speed-up of two orders of magni-
tude.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00371-024-03507-
y.
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