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Abstract. Transparency detection is a hard problem, as suggested by
animals and humans flying or running into glass. However, humans seem
to be able to learn and improve on the task with experience, begging
the question, whether computers are able to do so too. Making a com-
puter learn and understand transparency would be beneficial for mov-
ing agents, such as robots or autonomous vehicles. Our contributions
are threefold: First, we conducted a perception study to obtain insights
about human transparency detection methods, when borders of trans-
parent objects are not visible. Second, based on our study insights we
created a novel synthetic dataset called DISTOPIA, which focuses on
the warping properties of transparent objects, placed in a variety of nat-
ural scenes and contains over 140.000 high resolution images. Third, we
modified and trained a deep neural network classification model with
an attention module to detect transparency through warping. Our re-
sults show that a neural network trained on synthetic data depicting
only distortion effects can solve the transparency detection problem and
surpasses human performance.

Keywords: Perception · Computer vision · Artificial intelligence · Scene
understanding

1 Introduction

Transparency is a quite common phenomenon in modern day society. While
it can be observed in abundance in urban scenes in the form of glass panes
on buildings or cars, it is still not an easy task to recognize transparency for
animals and humans. Notable examples are birds flying into windows, insects
not being able to find their way back out through window gaps, dogs running
into garden doors and even humans bumping into well cleaned shop fronts or
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doors. While this phenomenon is most probably due to the combination of differ-
ent perceptual foci, the lack of transparency recognition seems to play a major
role. A transparent material has distinguishable properties due to optical effects
like distortion, light absorption or reflectance. While physical transparency can
be measured with the appropriate tools and environments (objective measure-
ments), perceived transparency is a vision task that requires information parsing
from image input (perception). How this perception task works, is however still
an open field in perceptual psychology. Understanding the human capability to
detect transparency is not only interesting for psychological purposes, but also
for bionic transfer applications. The recognition of transparency by machines and
therefore the avoidance of e.g. closed glass doors, or the detection and mitigation
of transparency related effects on general vision tasks become more important
as moving agents, such robots and autonomous vehicles, become more prevalent.
Although, x-junction (contour) detection is a viable cue for transparency detec-
tion, we deliberately exclude them from our data, arguing that contours are not
a main effect of transparency. Most objects have perceivable contours, but there
are use-cases without them, such as looking through a windows or safety glasses.
This work provides new insights on the influence of two visual cues derived from
transparent objects regarding perception, namely reflection and distortion. Fur-
thermore, the impact of two different distortion objects, one resembling a glass
pane, the other a lens, as well as the significance of urban and natural back-
ground scenes on human transparency detection were evaluated.
Furthermore, we introduce a large synthetic dataset using ray tracing. Due to
our new insights about human perception we chose an image generation process,
which enables us to extract varying degrees of the distortion properties of trans-
parency and forgo reflectance. This is of special interest, as reflectance requires
complex scene understanding and overlaps strongly with mirroring effects.
Finally we show that an ANN, trained on our dataset, is able to distinguish
between transparency and transparency-free scenes. We evaluate our networks
for the different scene and transparent object categories, as well as the necessary
degree of distortion and elaborate our findings.
In summary our contributions are:

– A perception experiment showing that reflection and refraction play a crucial
role in perceiving transparency setting a baseline for human transparency
detection capabilities without x-junctions (contours).

– A novel dataset ”Distopia” for transparency detection via distortion, depict-
ing a wide variety of scenes and levels of distortion, with more than 140.000
images with a high resolution of more than 5 Megapixels (2252×2252 pixels).

– We deploy our dataset to synthetically train an ANN and show that distor-
tion is a sufficient cue to recognize transparancy in real world images. We
achieve high classification accuracy of up to 83%, and investigate the per-
formance difference of ”Urban” versus ”Nature” scenes, as well as difference
between our two types of transparency and outperform the human baseline
we established in our study.
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2 Related Work

Physically, transparency is an optical material property that describes the ability
to transmit electromagnetic waves depending upon its absorption and refraction
[10]. Furthermore, the shape and background of a transparent object can yield
additional degrees of visible distortions.
The question of how perceptual transparency works has been a topic of scientific
research for over 150 years [1, 2, 19]. The most prominent findings in this area
of research are X-junctions, luminance relations, and T-junctions, which occur
when a line in the background passes behind a transparent object, undergoing a
reduction in contrast [3, 4, 6]. Adelson and Anandan [5] have further developed
ordinal relations of transparency in regard to junctions. These junction phe-
nomenons can be easily reproduced even in the absence of physical transparency
and have been one of the most common techniques for depicting transparency
in art from ancient Egyptian times to the present day [16]. However, those tech-
niques often exploit human perception capabilities. Additional to the research
on junctions and luminance relations, there has been research on the constraints
of superimposed textures giving rise to perceptual transparency [8] and on color
constraints occuring at an objects contours for transparency [9, 11, 12].
Bex [14] showed a high dependency of the sensitivity to distortion on the local
image structure and suggested that the detection of distortion is based on a
higher-level representation of the image structure. Schlüter and Faul [28] discuss
that many shape-related properties of opaque objects cannot be simply trans-
ferred to transparent objects, because visual features become less perceivable.
Furthermore, they showed that human subjects used distortion and specular re-
flection cues to compare similar transparent objects, with specular reflections
being the dominantly used feature [22].
While stereopsis and motion can play a benefitial role for transparency detec-
tion, they are out of scope for our work [24, 7]. This decision is based on the
more constrained capturing setup for possible detection applications.
While computer vision-based transparency detection methods already exist, they
focus on different aspects or data properties. Most algorithms use additional im-
age information to complement rgb, including known object shapes [15, 20, 25],
depth channels [31, 18, 36], structured light [23, 26], light-fields [21, 29] or po-
larization cues [13, 38]. Furthermore, there are techniques that are exclusively
based on rgb input, but regard general image depth estimation with included
transparent objects [39] or transparency segmentation [34, 30, 32, 41]. However,
the networks of those methods are able to utilize transparency contours and
reflection properties, which are excluded from our approach. One big challenge
is, that only three public datasets which include transparency exist until now:
Trans10k [32], ClearGrasp [31] and TRANSCG [37]. While they are all suitable
for their intended purpose, no dataset we know of is applicable for our scenario,
because they include objects with contours and do not isolate distortion.
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3 Transparency Perception User Study

To detect transparency without border cues, we chose to investigate the impact of
two transparency cues: specular reflection and distortion. To gather insights for
machine vision solutions and to establish a baseline, we conducted a perceptual
experiment. For this purpose, stimuli were created, evaluated with a small group
of subjects and re-adjusted before the main experiment.

3.1 Experiment Design

We used a yes-no task setup, a standard method in psychological research to
measure a subject’s sensitivity to some particular sensory input. This design
was selected because it is not prone to subjective scaling biases and provokes
spontaneous reactions. The sensory input consisted of visual stimuli, showing a
natural or urban scenes with a transparent object in front (signal) or without
one. The intensity of each feature varied in steps from barely visible (index of
refraction further written IOR of 1.1, reflectiveness 2%) to clearly visible (IOR
1.8, reflectiveness 16%). To eliminate the influence of X-junctions (borders), ob-
ject contours were excluded, by showing the test subjects only the inner part of
the image. Subsequently, the stimuli were presented to subjects, who were asked
to decide whether they perceive transparency.
The experiment was designed using PsychoPy and conducted online with Pavlovia
[42]. All four intensity values of the two cues were shown individually paired with
both objects in front of all chosen background scenes. That leads to, 4·2·2·5 = 80
different stimuli in addition to images without transparency stimuli (no object).
A proportional usage of images with and without stimuli would have lead to an
unacceptable experiment duration, which would exceed the concentration capa-
bilities of the test subjects. Therefore, only 20% of the stimuli did not contain
a transparent object.

Fig. 1: Timeline of one trial: first, a white cross (1) was shown in the middle
of the screen for 0.3 s, to prevent eye fixation and delayed responses. Then the
stimulus (2) appeared for 0.5 s in total. After 0.5 s, the stimulus disappeared,
and the gray window (4) remained empty for the last 1.5 s. Simultaneously with
the stimulus, the subjects could react by pressing either the right arrow key for
“Yes, there was an object.” or the left arrow key for “No, there was no object.”
(3). A reaction immediately ended the trial, even if the stimulus has not been
shown for the entire 0.5 s yet. If the subjects did not react, the trial was ended
after 2.3 s, and the subsequent trial began.
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Each of the 80 stimuli showing a transparent object were presented to sub-
jects 21 times, while all five stimuli not containing an object were shown 84
times. This resulted in a total of 2100 trials, each lasting up to 2.3 s (see fig. 1).
Those 2100 trials per subject were split into seven blocks of equal size, giving
the subjects the opportunity for a short break in between.
Each trial was conducted as described in fig. 1. Stimuli were only shown for a
short period of time to prevent subjects from consciously searching for abnor-
malities. This setup ensures that the reaction was as intuitive as possible.
Before conducting the actual experiment, an iterative preliminary experiment
was performed to ensure a suitable process. The main study was conducted on
20 subjects consisted of eleven males and nine females with an average age of
25.6 (with a standard deviation of 7.4). Due to technical issues, the data showing
the circular object in the street scene was excluded from the analysis.

3.2 Stimuli and Data Generation

In order to vary distortion and specular reflections of transparent objects sep-
arately, we generated stimuli with synthetic transparent objects. To make the
experiment realistic, the objects were presented in different real-world scenes,
represented as panorama images. Two of them were located in nature, and
three in an urban environment. We used the Poly-Haven dataset, which con-
tains panoramas as high dynamic range images [43].
When selecting the nature panoramas, the focus was to exhibit as few unnatural
objects as possible, resulting in two different locations: Versveldpas (fig. 2a) and
Desert (fig. 2c). Two different day times were deliberately selected, especially to
get different lighting conditions and thus different specular reflections.
For the urban scenes, it was important that they were as diverse as possible and
close to what we encounter in our everyday life. We chose the following three:
Street (fig. 2f), Quattro Canti (fig. 2d) and Hamburg (fig. 2e), as they repre-
sent different common municipal scenes. We used a ray tracer to generate the
synthetic stimuli. The camera faces directly onto the transparent objects, while
the panorama is placed as a texture around the scene. We decided to use two
sophisticated, but common transparent objects: The first one being a quadratic
slice, resembling a window (see fig. 2a) that entails irregularities similar to the
deformation of small waves in liquids with low viscosity, such as in water or older
window glasses. The circular object (see fig. 2b) is lens-shaped and shows the
most deformation near the boundary regions of the object model.
Both objects have the same and constant material properties, except for their
IOR and reflection ratio parameters. We decided to use a circular section of the
stimuli, as seen in fig. 1. This resulted in all outer points of the stimuli being
equidistant from the center, thus providing similar times for saccadic eye move-
ments. The background color on which the stimuli were presented was a neutral
gray, to avoid unnecessary eye strain and avoid high contrasts. The outer stimuli
boundary was blurred to de-emphasize borderlines.
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(a) Versveld. (b) Versveld. (c) Desert (d) 4 Canti (e) Hamburg (f) Street

Fig. 2: Scenes used in our experiments. (a) and (c) shows natural scenes, while
(d), (e) and (f) show scenes from urban settings. (a) and (b) additionally show
our two transparent object types.

3.3 Results

Data and Analysis We calculated the mean correct answer ratios of all 20
participants, which is illustrated in table 1. The data shows that images without
transparent objects were recognized with a mean correct answer ratio of 92%.
Furthermore, there is a difference in detectability between the stimuli in natural
and urban scenes, as well as for our different transparent object types. This effect
is especially visible in fig. 3, which combines results from individual transparent
object types and scenes. It shows that urban scenes with the squared object
distortion cue leads to a significant increase in transparency perception.
For specular reflection, no apparent circumstantial differences can be perceived.
There is one clear outlier, which is the quadratic object in Quattro Canti. This
can be explained by the position of the light, resulting in few specular reflec-
tion stimuli. Fig. 3 also reflects this behavior as the perceivability does differ
marginally between transparent object types and scenes.

Transparency Perception through Distortion We evaluated the effect of
different levels of distortion on the perceivability of transparent objects. A Lev-
ene tests shows that the variances from our experiment are inhomogeneous. A
Shapiro-Wilk test shows that our data is not normally distributed, which,
however, can be neglected according to the central limit theorem as the number
of samples is greater than 20 in our experiment. A robust Welch test with a
resulting p-value below 0.001 shows that there are significant differences between
the mean values of the four groups. Given this observation, we further investi-
gated how much these groups differ from each other using a Games-Howell
test. This test reveals a significant difference between an IOR of 1.1 and the re-
maining distortion configurations. Additionally, it showed a significant difference
between an IOR of 1.33 and 1.8, but no significant difference between 1.33 and
1.52 and IORs of 1.52 and 1.8, showing that increasing distortions are beneficial
for detection, but the distance between distortion values might be to close.
Similar to this analysis, we examined whether our different transparent object
types influence the perceivability of transparency. Therefore, we also performed
a Welch test (p < 0.001), indicating a strong influence on perception. Analo-
gous, the scene type influences the perceivability of transparency (p < 0.001).
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Table 1: Mean correct answer ratios of all 20 subjects for each stimulus. Val-
ues close to 50% indicate mere guessing. 0% represents no correct prediction
and 100% means only correct prediction. × denotes images without transparent
objects. The circles and Squares denote the type of transparent object.

Distortion (IOR) Specularity

× 1.10 1.33 1.52 1.80 2% 4% 8% 16%

Hamb. □ 92 16 78 85 89 10 43 90 94

Hamb. # 92 10 17 18 23 9 7 28 78

4 Canti □ 93 9 53 76 83 7 7 6 9

4 Canti # 93 8 11 17 21 7 12 90 96

Street □ 86 18 67 84 90 26 22 79 95

Vers. □ 94 8 10 18 34 6 7 51 89

Vers. # 94 7 5 6 6 7 8 25 74

Desert □ 94 6 11 18 36 8 16 77 92

Desert # 94 10 7 9 10 9 22 77 93

µ 92 10 29 37 44 10 16 58 80

We can show that the presence of straight line segments in the stimuli, that
differs strongly between urban and nature scenes, explains part of the difference
between transparency perceivability. Therefor, we calculate the ratio of pixels,
that lie on straight line segments according to the deep learning detector M-LSD
[33, 17], for all distortion levels in each scene. The resulting ratios are depicted
in table 2, which correlate with our perception results.
While the perception of transparency is weaker in natural scenes, it might be
overcome by machine vision, as humans supposedly do not have an adequate
training level for transparent objects in natural environments. Furthermore this
cue seems viable, as distortion effects are characteristic and seldom false flags.

Table 2: Normalized differences between the lines in original and the distorted
images. The circles and Squares denote the type of transparent object. Natural
scenes are at 0, as there are no lines to be lost due to distortion.
Distortion Hamburg 4 Canti Street Versveldpas Desert

(IOR) □ # □ # □ □ # □ #
1.10 0.18 0.04 0.22 0.11 0.09 0 0 0.01 0.01

1.33 0.3 0.14 0.63 0.32 0.48 0 0 0.01 0.01

1.52 0.35 0.07 0.85 0.25 0.51 0 0 0.01 0.01

1.80 0.42 0.13 1 0.2 0.55 0 0 0.01 0.01
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Fig. 3: Mean correct answer ratio of distortion and reflection values grouped by
scene and the transparent object type.

Transparency Perception through Specular Reflections Similar to the
distortion, fig. 3 shows the mean ratios of correct answers for the specular reflec-
tion stimuli. A significant Levene test indicates data inhomogeneity. Further-
more, a Welch test with p-value below 0.001 indicates that the results differ
significantly between the different groups. In contrast to our previous analysis
on different distortion levels, the succeeding Games-Howell test revealed sig-
nificant differences between all selected reflection levels.
It can be concluded that the levels of specular reflection significantly affect the
perceiveability of transparent objects. However, while the results indicated that
humans are able work with this cue, specular reflection can also occur due to
metallic properties and might not be a strong indicator for transparency. Fur-
thermore, specular reflections require specific light setups to be perceivable.

Object and scene influence A comparison of the influence of the chosen
transparent object on the participants’ ability to perceive the transparent objects
showed no significance. Due to an insignificant Levene test, we conducted a one-
way analysis of variance, which revealed an insignificant p-value of 0.595. For
a comparison of the perceptual influence of the different scenes, we performed
a Welch test, which indicated insignificant differences. The marginal effects of
specularity changes can be taken from fig. 3.
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4 Artificial Transparency Detection Method

The insights from our perception study lead us to the conclusion, that distor-
tion is a viable cue for transparency detection, due to its characteristic and rare
property. We discard specular reflection and reflection as a whole, due to its
dependency on correct lighting and notion to be exhibited by various non trans-
parent objects. To evaluate our idea, we generated a large synthetic dataset,
shown in section 4.1 and we evaluate how well a neural network can detect
transparency when trained only on distortion in Section 4.2.

4.1 DISTOPIA Dataset

Following the design choices from our perception study, we synthetically create a
large dataset, which only depicts distortion cues. To obtain a broader background
base, we decided on a total of 315 panorama scenes (170 urban and 145 nature).
To eliminate unintended background distortions we disregarded any scene con-
taining substantial amounts of inherent transparent structures. Furthermore we
filtered out natural scenes with large urban influences and vice versa. We kept
the window structure and lens object, to have a direct comparison to our study.
For rendering we again adopt a ray tracer (Blender’s Cycles). We place the cam-
era within a HDRI background sphere and orient it towards our transparent
objects. Next we rotate the camera in 5° steps on a horizontal axis and generate
one image without transparent object and up to three images per object for each
step. Different to our study, the IOR was chosen randomly for each generated
image, and sampled from an uniform distribution. This results in a fairer learn-
ing set, as humans are also trained on a variety of IOR values. We repeated this
procedure for all 315 scenes and two objects, resulting in over 140 000 high res-
olution images. To test for generalization to real-world photographs, we collect
a small set of photos and report results on it alongside our synthetic data.

Table 3: Number of images within our training, validation, and test datasets.
Training, Validation, and Testing splits depict disjunct sets of scenes. We collect
a small set of photographs to evaluate the generalization to real world images.

Both (A) Circle (B) Rect (C) RectC (D) Real

Training 250.426 125.192 125.218 876.514 -
Validation 5.539 3.075 3.079 34.302 363
Testing 5.850 3.250 3.250 96.601 -

4.2 Classification

To show that distortion is a sufficient cue for transparency detection we use the
common CNN-based architecture ResNet, adopting the parameterization found
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in state-of-the-art GAN literature [35]. We provide each network block with a
(bilinearly) down-sampled version of the current tensor, and a residual connec-
tion. Our network predicts transparency presence, transparency type (if any),
distortion levels. Also, for regularization reasons, we predict whether an image
shows a Nature or Urban scene. We use (binary) cross entropy as loss function
for the first three and L1-loss for the distortion strength prediction.
In addition we argue that features relevant for distortion detection without vis-
ible corners and edges are located in the earlier layers of the feature extractor.
Therefore we add bottleneck attention modules [27] after the first ResNet block.
Combining attention with a bottleneck should allow the network to focus on rel-
evant cues and discard the rest. Multiple blocks allow each to attend to different
features. Also we use different non-linearities, that is average pooling for half of
the blocks and max pooling for the other. We provide a detailed description of
the architecture in the appendix for easy reproducibility.
We train ResNet networks for four different splits of our dataset. Next we eval-
uate our new network architecture (with attention) to the two best perform-
ing experiments and compare their performance on real data. The experiments
A, B, C, and D are as follows: First, we train a classifier to differentiate be-
tween scenes containing rectangular transparent objects, circular transparent ob-
jects and scenes containing no transparencies (experiment A, Both), second, we
train another network to distinguish circular transparencies from images with no
transparency (B, Circle), a third to classify rectangular with only central crops
(C, Rect), and finally a fourth for rectangular with additional random crops
(D, RectC ). We central crop the image, to remove the transparency’s edges.
Not removing the edges would provide exploitable features for the classifier and
most likely reduce its generalization capabilities. For experiment D (rectangular
with random cropping, before scaling to 512× 512), after applying the central
crop, we create an additional 7 random crops (after first removing the edge via
central crop) to get different image details. For each crop in all experiments we
also include the same image portion without transparencies, giving us a total
of 876.513 images. For task A we include circular transparency, for which the
circular distortion is an important cue. Therefore we restrict our data processing
to only central cropping whenever circles are included. we end up with a total of
250.425 images for experiment A (Both). Finally, we want to see the individual
performance when training a classifier each to just recognize one kind of trans-
parency (B: circles only, and C: rectangles only). They have 125.192 and 125.218
images for training. The exact number of training, validation, and test images
are to be found in table 3. In addition we validate on a set of photographs to
evaluate the generalization of our distortion-only training to real world images.
We use conventional image augmentation during training, such as flipping along
y, rotating, re-scaling, adjusting brightness, contrast, hue, and saturation. Our
experiments showed best performance with small batch sizes and we ended up
using 16 images per batch, together with small learning rates between 0.0001
to 0.000 25. As for our attention modules we varied their number and tried as
few as 1 and up to 8, and report our results with 8. We adopt an early stopping
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strategy, showing our classifiers 50 million images, testing every 0.5 million views
against our validation set, and using the best checkpoint on our test data. Our
real data is a first portion of our ongoing effort to record a real-world dataset
we plan to publish together with our synthetic data.

4.3 Evaluation

Ambiguous Scenes The quantitative results of our experiments can be seen in
table 4. We provide a prediction accuracy for each possible individual subgroup
derived from our data splits, concerning the background and object. Further-
more, we chose to show different buckets depending on the IOR each object had
and additional buckets for all images without transparency (None), as well as
all images with transparency (All). The reasoning is, that different IORs result
in differently hard to detect warping effects. This can be observed as a general
trend in our data. While there are maxima in each row (bold), that are not in
the ⌊1.7⌋ category, the prediction differences between those two values are only
up to 0.05. Furthermore, the ⌊1.1⌋ bucket always contains the lowest predictions
with a large gap to the ⌊1.2⌋ and following buckets, suggesting that this IOR is
comparatively hard to predict. The emphasized values indicate the highest pre-
diction value over all buckets, including the None category. These overlap with
the best bucket predictions for the Circle object (B). In all other cases, the None
prediction outperform the warping predictions. Especially the Both object (A)
category shows large differences of up to 0.54 between the best bucket and None
prediction. These findings suggest, that it might be easier to learn the detection
of no transparency over learning two different object warping effects for (A).
Our findings from the perception experiment, that different background scenery
types might influence predictions, did not directly translate to our data.
While the background scene type shows no particular effect on the overall predic-
tion accuracy, the object shape seems to be of high relevance for All predictions.
The Rect object (C) allows for an accuracy of up to 83%, with the cropped
version dropping to 75%. The Circle object (B) however, reaches only up to
59%. This seems to be reflected in the Both (A) set, where only about 62% of
images are classified correctly. Furthermore, all sets containing circles exhibit ei-
ther strong prediction accuracies in the bucket categories, or the None category.
This behaviour is not observed in the Rect sets, where evenly high accuracies
are reached over all categories. In total, this leads to the conclusion, that object
shapes and therefore different warping characteristics play a major role in de-
tecting transparency for our setup.

Real Data To check for generalization to real data we validate our checkpoints
against our set of photographs during training. We visualize our results in fig. 4.
Looking at the results, first, we note strong generalization early on. Second, we
see clear outperformance of our model compared to the ResNet version especially
for longer training times, as well as a smoothing out of the curve. Finally, when
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comparing both of our models between experiments, we see that experiment C
(without crops) comes close to experiment D (with crops) after around 17 to 18
million views, stays in a similar range till around 27 to 29 million views and than
drops to a similar level as the ResNet version. We argue that this is because of
overfitting, since experiment D has around seven times the amount of images
and much more variation. All together the drop in performance between our
synthetic and our real data is around 15%.

5 10 15 20 25 30 35 40 45
20

40

60

80

million views

a
cc
u
ra
cy

[%
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Ours real D Ours real C ResNet real D

ResNet real C ResNet synthetic C

Fig. 4: Accuracy on photographs with ResNet architecture against ours with
increasing number of training images (1 to 45 million) shown on experiments C
and D. For comparison we include the results of experiment C on synthetic data.

Failure Cases We present failure cases of our classifiers, focusing on images
with strong distortions, classified incorrectly as depicting no transparency, as
well as images with no transparency, classified as containing transparency. Also,
we show some interesting effects, for instance, although filtering the scenes be-
forehand, we missed some nature scenes containing man-made structures, which
led to crops containing predominantly urban scenery being classified in the train-
ing data as Nature. Interestingly, the classifiers predicted some of those images
correctly on the test set (that is as Urban). In addition, we have some scenes
containing transparencies, such as windows. Since we only labeled images as
containing transparencies when we ourselves placed some in the rendering, these
were also inconsistently labeled. Again, the classifiers predicted some of those
confusing samples correctly (containing transparency).
Fig. 5 shows incorrect classifications for circles, rectangles with and rectangles
without random cropping. We notice particular problems with skies and land-
scapes without much detail (such as snowscapes, fields, and wood), as well as
with views showing nothing but forest. We also note that strong backlighting
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Table 4: For each of our experiments A (rectangular and circular transparency),
B (circle only), C (rectangular only), and D (rectangular with random crop-
ping) we report quantified results for both scenes as well as their combination.
We subdivide the range of possible refraction parameter choices into buckets
⌊δ⌋ = [δ, δ + 0.1). The table also includes performance on images containing no
transparency (×) and over all buckets (∀). The emphasized value in each row
denotes the highest prediction value in a row and bold values exclude ×.

Data Index of Refraction (IOR)
Object Scene × ⌊1.1⌋ ⌊1.2⌋ ⌊1.3⌋ ⌊1.4⌋ ⌊1.5⌋ ⌊1.6⌋ ⌊1.7⌋ ∀

Both (A)

Both 0.83 0.26 0.37 0.36 0.39 0.44 0.45 0.44 0.61
Urban 0.92 0.23 0.26 0.27 0.3 0.36 0.42 0.38 0.62
Nature 0.73 0.3 0.48 0.48 0.48 0.53 0.48 0.51 0.6

Circle (B)
Both 0.19 0.87 0.93 0.94 0.93 0.93 0.96 0.96 0.56
Urban 0.15 0.86 0.91 0.92 0.91 0.9 0.93 0.94 0.53
Nature 0.23 0.88 0.96 0.96 0.96 0.96 0.98 0.98 0.59

Rect (C)
Both 0.97 0.45 0.61 0.65 0.68 0.76 0.79 0.76 0.82
Urban 0.97 0.47 0.64 0.66 0.65 0.76 0.85 0.8 0.83
Nature 0.97 0.43 0.59 0.64 0.72 0.76 0.72 0.72 0.81

RectC (D)
Both 0.98 0.43 0.49 0.53 0.57 0.62 0.63 0.63 0.75
Urban 0.99 0.41 0.49 0.54 0.57 0.62 0.64 0.62 0.73
Nature 0.97 0.44 0.49 0.52 0.57 0.62 0.62 0.65 0.76

(sun, human-made lights) leads to errors. Finally, we include a sample of circle-
classifier failures on an image depicting vignetting-like characteristics (top right),
incorrectly classifying the image as containing a circular transparency. Although
we handpicked our scenes to have a clean split between scenes depicting Urban
structures and those, showing Nature such as forests and plains, some samples
slipped through our filtering. This becomes especially apparent when looking at
our use case D (rectangles with cropping) in which a small man-made struc-
ture (such as a house) in the background, can become the central element of
the image. An interesting effect we witnessed concerns transparencies within the
background image, as can be seen in fig. 5: Our classifier (correctly) predicts the
presence of the transparancy, even though our ground truth label says otherwise.
To combat this problem, one needs to filter even more rigorously for use case D.

5 Conclusion and Future Work

We motivated the problem of transparency detection for e.g. intelligent moving
agents. In order to investigate whether specular reflections and distortions are
possible cues for transparency detection and to establish a baseline, we designed
and carried out a perception experiment. Our subsequent analysis shows that the
two cues have a significant positive effect on the perceivability of transparency.
While specular reflection is the more robust cue for humans, it is also strongly
dependent on scene understanding, lighting conditions and overlaps with reflec-
tion properties. Therefore, in our second experiment we investigate how well
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(a) Building (Nature scene) (b) Tree (Nature scene) (c) Brick wall (Urban scene)

Fig. 5: Although we checked by hand, some scenes of our dataset contain some
ambiguity, which makes it interesting to see, what our classifiers do with such
samples. For instance, the first image (a) shows a building within a Nature
scene, blurring the line between our two splits of Nature versus Urban scenes.
This becomes a problem when, during our random cropping, the house becomes
the main subject of the resulting image. Similarly, the second image (b) shows a
tree (Nature) in front of a brick wall (Urban). The last image (c) shows strong
transparencies in the background (glass).

computers can detect transparency when trained on distortion only. We created
DISTOPIA, our novel dataset for distortion-only-based transparency detection
containing more than 140 000 high-resolution images. This dataset will be re-
leased, to allow the reproducibility of our findings and further research by the
community. We then evaluated the performance of a convolutional neural net-
work on our dataset and introduce a modification to better suit our applications
and improve results on real data. We achieve high performance, both on our
synthetic test set, as well as on our real photographs. This leads us to conclude,
that distortion is also a viable cue to achieve high classification accuracy for
computer-based vision models, that surpasses human transparency perception.
In the future, we want to expand our dataset by including more kinds of transpar-
ent objects, especially regarding their overall shape and material properties (e.g.
acrylic glass and toned glass) and create a bigger and more diverse real world
dataset for testing. Also, after demonstrating the validity of using distortion-
only for transparency detection via a CNN, we want to adopt additional net-
work architecture such as the vision transformer and new developments such as
FocalNets [40] to improve upon our results.
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Supplementary Material

2% IOR 4% IOR 8% IOR 16% IOR

1.1 IOR 1.33 IOR 1.52 IOR 1.8 IOR

Fig. 6: The images show an urban scene from our study. The first row visualizes
four degrees of reflection. The percentual number denotes the reflectiveness of a
material between the scene and the camera. The green colored mask emphasizes
the influence of the reflectiveness on the base image. The second row visualizes
four degrees of refraction. The number denotes the IOR and the green lines
highlight straight lines. The stronger the refraction, the more lines disappear.
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Table 5: Network architecture in detail.
Function Parameters Shape Precision
b512.fromrgb 256 64, 512, 512 float16
b512.skip 8192 128, 256, 256 float16
b512.conv0 36928 64, 512, 512 float16
b512.conv1 73856 128, 256, 256 float16
b512 - 128, 256, 256 float16
(bottleneck attention) - 8, 128, 256, 256 float32
b256.skip 32768 256, 128, 128 float16
b256.conv0 147584 128, 256, 256 float16
b256.conv1 295168 256, 128, 128 float16
b256 - 256, 128, 128 float16
b128.skip 131072 512, 64, 64 float16
b128.conv0 590080 256, 128, 128 float16
b128.conv1 1180160 512, 64, 64 float16
b128 - 512, 64, 64 float16
b64.skip 262144 512, 32, 32 float16
b64.conv0 2359808 512, 64, 64 float16
b64.conv1 2359808 512, 32, 32 float16
b64 - 512, 32, 32 float16
b32.skip 262144 512, 16, 16 float32
b32.conv0 2359808 512, 32, 32 float32
b32.conv1 2359808 512, 16, 16 float32
b32 - 512, 16, 16 float32
b16.skip 262144 512, 8, 8 float32
b16.conv0 2359808 512, 16, 16 float32
b16.conv1 2359808 512, 8, 8 float32
b16 - 512, 8, 8 float32
b8.skip 262144 512, 4, 4 float32
b8.conv0 2359808 512, 8, 8 float32
b8.conv1 2359808 512, 4, 4 float32
b8 - 512, 4, 4 float32
b4.mbstd - 513, 4, 4 float32
b4.conv 2364416 512, 4, 4 float32
b4.fc 4194816 512 float32
b4.out 262656 512 float32
b4.scene classr 1026 2 float32
b4.trans class 1539 3 float32
b4.trans presence class 1026 2 float32
b4.strength class 513 1 float32
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Table 6: Bottleneck attention architecture in detail.
Function Parameters Shape Precision
b512.conv1 73856 128, 256, 256 float16
b512 - 128, 256, 256 float16
cbams.0.ChannelGate.mlp 2184 128 float32
cbams.0.ChannelGate - 128, 256, 256 float32
cbams.0.SpatialGate.compress - 2, 256, 256 float32
cbams.0.SpatialGate.spatial 100 1, 256, 256 float32
cbams.0.SpatialGate - 128, 256, 256 float32
cbams.1.ChannelGate.mlp 2184 128 float32
cbams.1.ChannelGate - 128, 256, 256 float32
cbams.1.SpatialGate.compress - 2, 256, 256 float32
cbams.1.SpatialGate.spatial 100 1, 256, 256 float32
cbams.1.SpatialGate - 128, 256, 256 float32
cbams.2.ChannelGate.mlp 2184 128 float32
cbams.2.ChannelGate - 128, 256, 256 float32
cbams.2.SpatialGate.compress - 2, 256, 256 float32
cbams.2.SpatialGate.spatial 100 1, 256, 256 float32
cbams.2.SpatialGate - 128, 256, 256 float32
cbams.3.ChannelGate.mlp 2184 128 float32
cbams.3.ChannelGate - 128, 256, 256 float32
cbams.3.SpatialGate.compress - 2, 256, 256 float32
cbams.3.SpatialGate.spatial 100 1, 256, 256 float32
cbams.3.SpatialGate - 128, 256, 256 float32
cbams.4.ChannelGate.mlp 2184 128 float32
cbams.4.ChannelGate - 128, 256, 256 float32
cbams.4.SpatialGate.compress - 2, 256, 256 float32
cbams.4.SpatialGate.spatial 100 1, 256, 256 float32
cbams.4.SpatialGate - 128, 256, 256 float32
cbams.5.ChannelGate.mlp 2184 128 float32
cbams.5.ChannelGate - 128, 256, 256 float32
cbams.5.SpatialGate.compress - 2, 256, 256 float32
cbams.5.SpatialGate.spatial 100 1, 256, 256 float32
cbams.5.SpatialGate - 128, 256, 256 float32
cbams.6.ChannelGate.mlp 2184 128 float32
cbams.6.ChannelGate - 128, 256, 256 float32
cbams.6.SpatialGate.compress - 2, 256, 256 float32
cbams.6.SpatialGate.spatial 100 1, 256, 256 float32
cbams.6.SpatialGate - 128, 256, 256 float32
cbams.7.ChannelGate.mlp 2184 128 float32
cbams.7.ChannelGate - 128, 256, 256 float32
cbams.7.SpatialGate.compress - 2, 256, 256 float32
cbams.7.SpatialGate.spatial 100 1, 256, 256 float32
cbams.7.SpatialGate - 128, 256, 256 float32
b256.skip 32768 256, 128, 128 float16
b256.conv0 147584 128, 256, 256 float16


